【題目】設(shè)函數(shù)f(x)=2ax﹣ +lnx,若f(x)在x=1,x= 處取得極值, (Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[ ,2]上的單調(diào)區(qū)間
(Ⅲ)在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)
【答案】解:(Ⅰ)∵函數(shù)f(x)=2ax﹣ +lnx, ∴f′(x)=2a﹣ + ,x>0,
∵若f(x)在x=1,x= 處取得極值,
∴f′(1)=0,f′( )=0,即2a﹣b+1=0,2a﹣4b+2=0,
解得a=﹣ ,b= ;
(Ⅱ)f′(x)= ,x>0,
∵f′(x)= >0,
∴ ,
∵f′(x)= <0, <x<2
∴ <x ,1<x<2,
∴單調(diào)遞增區(qū)間( ,1),遞減區(qū)間( , ),(1,2);
(Ⅲ)f(x)=﹣ x- +lnx,
f( )=﹣ ﹣ln2,f(2)=﹣ +ln2,f( )=﹣1﹣ln2
f(1)=﹣1,
f(x)在[ ,2]上的最大值為:﹣ +ln2,
最小值為:﹣1﹣ln2
∵在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,
∴c≥f(x)min , c≥﹣1﹣ln2
c的最小值為:﹣1﹣ln2
【解析】(Ⅰ)利用存在極值的條件得出f′(1)=0,f′( )=0,求解.(Ⅱ)利用導(dǎo)數(shù)與單調(diào)性的關(guān)系f′(x)= >0,f′(x)= <0, <x<2求解得出區(qū)間,(Ⅲ)利用導(dǎo)數(shù)求解最大值,最小值,根據(jù)在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,c≥f(x)min , 求解即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(Ⅰ)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù) ,且0<x1<x2<1,設(shè) ,則a,b的大小關(guān)系是( )
A.a>b
B.a<b
C.a=b
D.b的大小關(guān)系不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計(jì)如下表:
學(xué)生 | 1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(1)從統(tǒng)計(jì)數(shù)據(jù)看,甲、乙兩個(gè)班哪個(gè)班成績(jī)更穩(wěn)定(用數(shù)字特征說(shuō)明);
(2)若把上表數(shù)據(jù)作為學(xué)生投籃命中率,規(guī)定兩個(gè)班級(jí)的1號(hào)和2號(hào)同學(xué)分別代表自己的班級(jí)參加比賽,每人投籃一次,將甲、乙兩個(gè)班兩名同學(xué)投中的次數(shù)之和分別記作和,試求和的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<α< ,cos(2π﹣α)﹣sin(π﹣α)=﹣
(1)求sinα+cosα的值;
(2)求sin(2α﹣ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2
(I)若G為DC的中點(diǎn),求證:EG//平面BCF;
(II)若 ,求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)y= 的定義域?yàn)镸,那么( )
A.{x|x>﹣1且x≠0}
B.{x|x>﹣1}
C.M={x|x<﹣1或x>0}
D.M={x|x<﹣1或﹣1<x<0或x>0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(1)當(dāng)x≤0時(shí),解不等式f(x)≥﹣1;
(2)寫(xiě)出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com