已知曲線C:
x2
an2
-y2=1(an>0,n∈N*)的離心率為e=
1+
1
n2

(1)求an;
(2)令bn=
1
anan+1
,Tn=b1+b2+…+bn,求證:Tn<1.
考點:數(shù)列的求和,雙曲線的簡單性質(zhì)
專題:等差數(shù)列與等比數(shù)列,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由曲線C:
x2
an2
-y2=1(an>0,n∈N*)可得a=an,b=1,再利用離心率計算公式e=
c
a
=
1+
b2
a2
即可得出.
(2)由bn=
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1
,利用“裂項求和”即可得出Tn.即可證明.
解答: (1)解:由曲線C:
x2
an2
-y2=1(an>0,n∈N*)可得a=an,b=1,
又離心率為e=
1+
1
n2
,∴
1+
1
n2
=
1+
1
a
2
n
,解得an=n.
(2)證明:bn=
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1
,
∴Tn=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)
=1-
1
n+1
<1.
∴Tn<1.
點評:本題考查了雙曲線的離心率計算公式、數(shù)列的通項公式、“裂項求和”方法、不等式的證明,考查了推理能力和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若命題“p或q為真命題,則命題p或命題q均為真命題”
②命題p:?x∈R,sinx≤1.則¬p:?x0∈R,使sinx0>1;
③已知函數(shù)f′(x)是函數(shù)f(x)在R上的導(dǎo)數(shù),若f(x)為偶函數(shù),則f′(x)是奇函數(shù);
④已知x
I
R,則“x>1”是“x>2”的充分不必要條件;
其中真命題的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p1:若函數(shù)f(x)=
1
x-a
在(-∞,0)上為減函數(shù),則a∈(-∞,0);命題p2:x∈(-
π
2
,
π
2
)是f(x)=tanx為增函數(shù)的必要不充分條件;命題p3:“a為常數(shù),?x∈R,f(x)=a2x2+ax+1>0”的否定是“a為變量,?x∈R,f(x)=a2x2+ax+1≤0”.以上三個命題中,真命題的個數(shù)是( 。
A、3B、2C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有驅(qū)蟲藥1618和1573各3杯,從中隨機取出3杯稱為一次試驗(假定每杯被取到的概率相等),將1618全部取出稱為試驗成功.
(1)求一次試驗成功的概率.
(2)求恰好在第3次試驗成功的概率(要求將結(jié)果化為最簡分?jǐn)?shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x+2
,數(shù)列an滿足:a1=
4
3
,an+1=f(an).
(1)求證數(shù)列{
1
an
}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)記Sn=a1a2+a2a3+…+anan+1,求證:Sn
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-2x-3=0},B={x|x2+x-a=0},且B?A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的解析式.
(1)已知二次函數(shù)f(x)滿足f(0)=0,且f(x+1)-f(x)=4x,求f(x)的解析式.
(2)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x3+2x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,10)中隨機地取出兩個數(shù)x和y,求兩數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)矩陣M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案