已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則=( )
A.1
B.2
C.3
D.4
【答案】分析:類比平面幾何結(jié)論,推廣到空間,則有結(jié)論:“=3”.設(shè)正四面體ABCD邊長為1,易求得AM=,又O到四面體各面的距離都相等,所以O(shè)為四面體的內(nèi)切球的球心,設(shè)內(nèi)切球半徑為r,則有r=,可求得r即OM,從而可驗(yàn)證結(jié)果的正確性.
解答:解:推廣到空間,則有結(jié)論:“=3”.
設(shè)正四面體ABCD邊長為1,易求得AM=,又O到四面體各面的距離都相等,
所以O(shè)為四面體的內(nèi)切球的球心,設(shè)內(nèi)切球半徑為r,
則有r=,可求得r即OM=,
所以AO=AM-OM=,所以 =3
故答案為:3
點(diǎn)評(píng):本題考查類比推理、幾何體的結(jié)構(gòu)特征、體積法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則
AG
GD
=2
”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則
AO
OM
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)卷(解析版) 題型:選擇題

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則”。若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等”,則(   )

A.1                B.2                C.3                D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知結(jié)論:在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角

形ABC的重心,則AG:GD=2:1,若把該結(jié)論推廣到空間中,則有結(jié)論:在棱長都相等的

四面體ABCD中,若三角形BCD的中心為M,四面體內(nèi)部一點(diǎn)O到各面的距離都相等,

則AO:OM=(    )

A.1               B.2          C.3          D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省深圳市部分學(xué)校高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則=( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省定西市文峰中學(xué)高三數(shù)學(xué)仿真模擬試卷(二)(解析版) 題型:選擇題

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則=( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案