在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
④存在恰經(jīng)過一個整點的直線.
考點:命題的真假判斷與應用
專題:新定義
分析:①舉例說明該命題正確;
②舉例說明該命題錯誤;
③通過理論說明該命題錯誤;
④舉例說明該命題正確.
解答: 解:對于①,令y=x+
1
2
,則該直線既不與坐標軸平行又不經(jīng)過任何整點,∴①正確;
對于②,若k=
2
,b=-
2
,則直線y=
2
x-
2
經(jīng)過(1,0),∴②錯誤;
對于③,設y=kx為過原點的直線,若此直線l過不同的整點(x1,y1)和(x2,y2),
把兩點代入直線l方程得:y1=kx1,y2=kx2,
兩式相減得:y1-y2=k(x1-x2),
則(x1-x2,y1-y2)也在直線y=kx上且為整點,
通過這種方法得到直線l經(jīng)過無窮多個整點,
又通過上下平移得到y(tǒng)=kx+b不一定成立,∴③不正確;
對于④,令直線y=
2
x,則該直線恰過整點(0,0),∴④正確.
綜上,命題正確的序號有:①④.
故答案為:①④.
點評:本題考查了新定義的命題的判斷真假的問題,解題時應利用舉例說明的方法,并能適當?shù)淖C明,是較難的題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是A、B、C的對邊,且滿足
cosB
cosC
=-
b
2
a+c

(1)求角B的值;
(2)若a=1,c=2
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x

(1)求函數(shù)f(x)的定義域A;
(2)計算f(m)+f(-m)(m∈A)的值,由此你發(fā)現(xiàn)了該函數(shù)的什么性質?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-2,0),B(2,0),P是圓C:(x+3)2+(y-4)2=9上一動點.
(1)求△PAB的重心G的軌跡;
(2)求|PA|2+|PB|2的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工程隊共有400人,要建造一段3600米的高速公路,工程隊若將400人分成兩組,甲組完成1000米的軟土地帶,乙完成1600迷的硬土地帶,兩組同時施工,當兩組全部完成施工,施工結束后,以最后完成施工的一組所需要的時間作為整個工程的工期,據(jù)測算,軟硬土地帶的工程量需要一名工人分別工作50工時和20工時.
(1)如何安排兩組的人數(shù),使甲組比乙組先完成施工?
(2)設甲組人數(shù)為x人,全部工程的工期為f(x),求f(x)的表達式,并求出定義域.
(3)如何安排兩組的人數(shù),使工程工期最短?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(2α+β)=3sinβ,求證:tan(α+β)=2tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1
x
(x≠0),求f(
1
2
)+f(-2)的值,并判斷f(x)是否具有奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求橢圓mx2+ny2+mn=0(m<n<0)的焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

停車場劃出一排12個停車位置,今有8輛車需要停放,要求空車位連在一起,不同的停車方法有( 。
A、
A
8
8
B、
A
8
12
C、
A
8
8
C
1
8
D、
A
8
8
C
1
9

查看答案和解析>>

同步練習冊答案