12.如圖,已知平面四邊形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC與BD交于點(diǎn)O,記I1=$\overrightarrow{OA}$•$\overrightarrow{OB}$,I2=$\overrightarrow{OB}$•$\overrightarrow{OC}$,I3=$\overrightarrow{OC}$•$\overrightarrow{OD}$,則( 。
A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

分析 根據(jù)向量數(shù)量積的定義結(jié)合圖象邊角關(guān)系進(jìn)行判斷即可.

解答 解:∵AB⊥BC,AB=BC=AD=2,CD=3,
∴AC=2$\sqrt{2}$,
∴∠AOB=∠COD>90°,
由圖象知OA<OC,OB<OD,
∴0>$\overrightarrow{OA}$•$\overrightarrow{OB}$>$\overrightarrow{OC}$•$\overrightarrow{OD}$,$\overrightarrow{OB}$•$\overrightarrow{OC}$>0,
即I3<I1<I2,
故選:C.

點(diǎn)評(píng) 本題主要考查平面向量數(shù)量積的應(yīng)用,根據(jù)圖象結(jié)合平面向量數(shù)量積的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$cos(2x-$\frac{π}{3}$)-2sinxcosx.
(I)求f(x)的最小正周期;
(II)求證:當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),f(x)≥-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若曲線y=a|x|與y=x+a有兩個(gè)公共點(diǎn),則a的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在回歸分析與獨(dú)立性檢驗(yàn)中:
①相關(guān)關(guān)系是一種確定關(guān)系  
②在回歸模型中,x稱為解釋變量,y稱為預(yù)報(bào)變量  
③R2越接近于1,表示回歸的效果越好  
④在獨(dú)立性檢驗(yàn)中,|ad-bc|越大,兩個(gè)分類變量關(guān)系越弱;|ad-bc|越小,兩個(gè)分類變量關(guān)系越強(qiáng)  
⑤殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,帶狀區(qū)域?qū)挾仍秸,回歸方程的預(yù)報(bào)精度越高,
正確命題的個(gè)數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若將函數(shù)y=2cos(2x-$\frac{π}{3}$)的圖象向右平移$\frac{1}{4}$個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為(  )
A.$y=2sin(2x-\frac{π}{4})$B.$y=2sin(2x-\frac{π}{3})$C.$y=2sin(2x+\frac{π}{4})$D.$y=2sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C:$\frac{{x}^{2}}{2}$+y2=1上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)Q在直線x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
經(jīng)計(jì)算得$\overline{x}$=$\frac{1}{16}\sum_{i=1}^{16}{x_i}$=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})}$≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)$\overline{x}$作為μ的估計(jì)值$\hat μ$,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值$\hat σ$,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)exf(x)(e≈2.71828…是自然對(duì)數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱函數(shù)f(x)具有M性質(zhì).下列函數(shù)中所有具有M性質(zhì)的函數(shù)的序號(hào)為①④.
①f(x)=2-x   ②f(x)=3-x       ③f(x)=x3  ④f(x)=x2+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),右頂點(diǎn)為A,點(diǎn)E的坐標(biāo)為(0,c),△EFA的面積為$\frac{b^2}{2}$.
(I)求橢圓的離心率;
(II)設(shè)點(diǎn)Q在線段AE上,|FQ|=$\frac{3}{2}$c,延長線段FQ與橢圓交于點(diǎn)P,點(diǎn)M,N在x軸上,PM∥QN,且直線PM與直線QN間的距離為c,四邊形PQNM的面積為3c.
(i)求直線FP的斜率;
(ii)求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案