cos
π
3
-tan
4
+
3
4
tan2(-
π
6
)
+cos2
6
+sin
2
=
 
考點:三角函數(shù)的化簡求值
專題:計算題
分析:由誘導公式及特殊角的三角函數(shù)值即可得解.
解答: 解:cos
π
3
-tan
4
+
3
4
tan2(-
π
6
)
+cos2
6
+sin
2
=
1
2
-1+
1
4
+
3
4
-1=-
1
2

故答案為:-
1
2
點評:本題主要考查了誘導公式及特殊角的三角函數(shù)值,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖1,△ABC是等腰三角形,其中∠A=90°,且DB⊥BC,∠BCD=30°,現(xiàn)將△ABC沿邊BC折起,使得二面角A-BC-D大小為30°(如圖2),則異面直線BC與AD所成的角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,Sn=2an-2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2an,cn=
1
bnbn+1
,記數(shù)列{cn}的前n項和Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論函數(shù)f(x)=
1-x2
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC,a=
2
,b=
3
,B=
π
3
,則A等于( 。
A、
π
6
B、
π
4
C、
4
D、
π
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市有東西南北四個進入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵現(xiàn)象,交警部門統(tǒng)計11月份30天內(nèi)的擁堵天數(shù).東西南北四個主干道入口的擁堵天數(shù)分別是18天,15天,9天,15天.假設每個入口發(fā)生擁堵現(xiàn)象互相獨立,視頻率為概率.
(I)求該城市一天中早高峰時間段恰有三個入口發(fā)生擁堵的概率;
(Ⅱ)設翻乏示一天中早高峰時間段發(fā)生擁堵的主干道入口個數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要制作一個長為a,寬為b(a≥b,單位:m),高為0.5m的無蓋長方體容器,容器的容量為2m3,若該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則當a=
 
m時,該容器的總造價最低,最低造價為
 
元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列a>0,b>0,給出下列四個不等式:
①a+b+
1
ab
≥2
2
;
②(a+b)(
1
a
+
1
b
)≥4;
a2+b2
ab
≥a+b;
④a+
1
a+4
≥-2.
其中正確的不等式有
 
(只填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+sinβ=
3
4
,求cosα+cosβ的取值范圍
 

查看答案和解析>>

同步練習冊答案