A. | $\frac{3}{8}$ | B. | $\frac{5}{9}$ | C. | $\frac{7}{10}$ | D. | $\frac{5}{8}$ |
分析 由題意畫出圖形,設(shè)四棱錐P-ABCD的高為h,底面ABCD的面積為S,可得四棱錐的體積,再利用比例關(guān)系結(jié)合等積法求出多面體ABCDEF的體積,作出得到四棱錐P-DCFE的體積,由測度比為體積比得答案.
解答 解:如圖,設(shè)四棱錐P-ABCD的高為h,底面ABCD的面積為S,
∴${V}_{P-ABCD}=\frac{1}{3}Sh$.
∵PE=2EA,PF=2FB,
∴EF∥AB,則EF∥平面ABCD,且F到平面ABCD的距離為$\frac{1}{3}h$,
∴${V}_{F-ABC}=\frac{1}{3}×\frac{1}{2}S×\frac{1}{3}h=\frac{1}{18}Sh$,
${V}_{E-ACD}=\frac{1}{18}Sh$,${V}_{A-EFC}=\frac{2}{3}{V}_{A-ECD}=\frac{2}{3}{V}_{E-ACD}$=$\frac{1}{27}Sh$.
則多面體ABCDEF的體積為$\frac{4}{27}Sh$.
∴${V}_{P-DCFE}=\frac{1}{3}Sh-\frac{4}{27}Sh=\frac{5}{27}Sh$.
∴M在平面EFCD上方的概率是$\frac{\frac{5}{27}Sh}{\frac{1}{3}Sh}=\frac{5}{9}$.
故選:B.
點評 本題考查幾何概型,考查多面體體積的求法,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com