5.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點A(0,-2)和C(0,2),頂點B在橢圓$\frac{y^2}{12}$+$\frac{x^2}{8}$=1上,則$\frac{sinA+sinC}{sinB}$的值是$\sqrt{6}$.

分析 由已知利用橢圓的定義可得|AB|+|BC|=2a,AC=2c.在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$,即可得出.

解答 解:如圖所示,
由橢圓$\frac{y^2}{12}$+$\frac{x^2}{8}$=1,可得:a=$2\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}-^{2}}$=2.
∴△ABC的頂點A(0,-2)和C(0,2),為橢圓的兩個焦點.
∴|AB|+|BC|=2a=4$\sqrt{6}$,AC=2c=4.
在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$=$\frac{2a}{2c}$=$\frac{4\sqrt{6}}{4}$=$\sqrt{6}$.
故答案為:$\sqrt{6}$.

點評 本題考查了橢圓的定義及其標(biāo)準(zhǔn)方程、正弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=3sin(-x+$\frac{π}{6}$)的相位和初相分別是(  )
A.-x+$\frac{π}{6}$,$\frac{π}{6}$B.x+$\frac{5π}{6}$,$\frac{5π}{6}$C.x-$\frac{π}{6}$,-$\frac{π}{6}$D.x+$\frac{5π}{6}$,$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinθ+cosθ=$\frac{1}{5}$,且θ∈(0,π),求下列各式的值:
(1)sinθcosθ;
(2)cos2θ-sin2θ;
(3)sin3θ-cos3θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則:
(1)復(fù)數(shù)z對應(yīng)的點構(gòu)成的區(qū)域的面積為π
(2)y≥x的概率為$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知兩個關(guān)于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0(m∈Z),若兩方程的根都是整數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2+bln(x+1).
(1)若x=1時,函數(shù)f(x)取極小值,求實數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)b的取值范圍;
(3)若b=-1,證明對任意正整數(shù)n,不等式f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{n}$)<1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個焦點,若在雙曲線上存在點P,使得∠F1PF2=90°,且滿足2∠PF1F2=∠PF2F1,那么雙曲線的離心率為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x+a)ex(e為自然對數(shù)的底數(shù)),若x=1是函數(shù)f(x)的極值點.
(Ⅰ)求a的值;         
(Ⅱ)任意x1,x2∈[0,2]時,證明:|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出四個命題:
①若x2-3x+2=0,則x=1或x=2;
②若x=y=0,則x2+y2=0;
③已知x,y∈N,若x+y是奇數(shù),則x,y中一個是奇數(shù),一個偶數(shù);
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率.
那么( 。
A.①的逆命題為真B.②的否命題為假C.③的逆命題為假D.④的逆否命題為假

查看答案和解析>>

同步練習(xí)冊答案