20.函數(shù)y=3sin(-x+$\frac{π}{6}$)的相位和初相分別是( 。
A.-x+$\frac{π}{6}$,$\frac{π}{6}$B.x+$\frac{5π}{6}$,$\frac{5π}{6}$C.x-$\frac{π}{6}$,-$\frac{π}{6}$D.x+$\frac{5π}{6}$,$\frac{π}{6}$

分析 當函數(shù)y=Asin(ωx+φ)(A>0,ω>0,x∈[0,+∞))表示一個簡諧振動時,則ωx+φ叫做相位,x=0時的相位φ叫做初相,利用誘導公式化簡即可根據(jù)定義得解.

解答 解:∵y=3sin(-x+$\frac{π}{6}$)=-3sin(x-$\frac{π}{6}$)=3sin(x+$\frac{5π}{6}$),
∴相位和初相分別是x+$\frac{5π}{6}$,$\frac{5π}{6}$.
故選:B.

點評 本題主要考查了y=Asin(ωx+φ)中參數(shù)的物理意義,誘導公式的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.若復數(shù)z滿足|z-1-2i|=2,則|z-3|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.等比數(shù)列{an},a1=3-5,前8項的幾何平均為9,則a3=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知C6x=C62,則x=2或4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.數(shù)列{an}滿足an+1=an(an-n)+1,n∈N+
(1)當a1=2時,求a2,a3,a4,并猜想出an的一個通項公式(不要求證)
(2)若a1≥3,用數(shù)學歸納法證明:對任意的n=1,2,3,…,都有an≥n+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在四棱錐P-ABCD中,ABCD為平行四邊形,AC與BD交于O,G為BD上一點,BG=2GD,$\overrightarrow{PA}$=$\overrightarrow{a}$,$\overrightarrow{PB}$=$\overrightarrow$,$\overrightarrow{PC}$=$\overrightarrow{c}$,試用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{PG}$=$\frac{1}{6}(\overrightarrow{a}+\overrightarrow{c})+\frac{2}{3}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在直三棱柱ABC-A1B1C1 中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:C1F∥平面ABE;
(2)設(shè)P是BE的中點,求三棱錐P-B1C1F的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-2x-3lnx,g(x)=$\frac{1}{2}$x2-3x-$\frac{1}{2}$a(a∈R).
(1)若?x>0,f(x)≥m恒成立,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)F(x)=f(x)-2g(x),若F(x)在[1,5]上有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在平面直角坐標系xOy中,已知△ABC的頂點A(0,-2)和C(0,2),頂點B在橢圓$\frac{y^2}{12}$+$\frac{x^2}{8}$=1上,則$\frac{sinA+sinC}{sinB}$的值是$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案