已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
若a<b<c,且f(a)=f(b)=f(c),則3ab+
c
a2b2
的取值范圍是
 
考點:對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:畫出圖象得出當(dāng)f(a)=f(b)=f(c),a<b<c時,0<a<1<b<c<12,ab=1,化簡3ab+
c
a2b2
=3+c,即可求解范圍.
解答: 解:函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
,

f(a)=f(b)=f(c),a<b<c,
∴0<a<1<b<c<12,ab=1,
∴3ab+
c
a2b2
=3+c,
13<3+c<15,
故答案為:(13,15)
點評:本題考查了函數(shù)的性質(zhì),運(yùn)用圖象得出a,b,c的范圍,關(guān)鍵是得出ab=1,代數(shù)式的化簡,不等式的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正六棱臺的底面邊長分別為1厘米和2厘米,高是1厘米,則它的側(cè)面積是
 
厘米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x+1|=2x根的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意的x,y∈R,都有f(x)+f(y)=2f(
x+y
2
)•f(
x-y
2
),f(0)≠0,則f(x)為( 。
A、是奇函數(shù)
B、是偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、無法確定f(x)奇偶性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為豐富課余生活,某班開展了一次有獎知識競賽,在競賽后把成績(滿分為100分,分?jǐn)?shù)均為整數(shù))進(jìn)行統(tǒng)計,制成該頻率分布表:
序號組(段)頻數(shù)(人數(shù))頻率
1[0,60)a0.1
2[60,75)150.3
3[75,90)25b
4[90,]cd
合計501
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若得分在[90,100]之間的有機(jī)會得一等獎,已知其中男女比例為2:3,如果一等獎只有兩名,寫出所有可能的結(jié)果,并求獲得一等獎的全部為女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方體ABCD-A1B1C1D1中,AB=2
3
,AD=2
3
,AA1=2,那么DD1和BC1所成的角是
 
度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-a•lnx(a∈R),g(x)=x2-2mx+4(m∈R).
(Ⅰ)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求實數(shù)a與b的值;
(Ⅱ)求f(x)的單調(diào)減區(qū)間;
(Ⅲ)當(dāng)a=1時,若對任意的x1∈[1,2],存在x2∈[1,2],使得f(x1)≥g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1:x2+y2=1與圓O2:x2+y2-6x+8y+9=0,則兩圓的位置關(guān)系為( 。
A、相交B、內(nèi)切C、外切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,設(shè)二次函數(shù)f(x)=x2+4x+b(x∈R)的圖象與兩坐標(biāo)軸有三個不同的交點.經(jīng)過這三個交點的圓記為C.
(1)求實數(shù)b的取值范圍;
(2)求圓C的方程;
(3)問圓C是否經(jīng)過某定點(其坐標(biāo)與b無關(guān))?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案