已知圓O1:x2+y2=1與圓O2:x2+y2-6x+8y+9=0,則兩圓的位置關(guān)系為(  )
A、相交B、內(nèi)切C、外切D、相離
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:直線與圓
分析:求出兩個(gè)圓的圓心與半徑,通過弦心距與半徑和與差的關(guān)系,判斷兩個(gè)圓的位置關(guān)系.
解答: 解:圓O1:x2+y2=1的圓心(0,0),半徑為:1;
圓O2:x2+y2-6x+8y+9=0,圓心(3,-4),半徑為:4.
兩個(gè)圓的圓心距為:
32+(-4)2
=5,恰好是兩個(gè)圓的半徑和,
所以兩個(gè)圓外切.
故選:C.
點(diǎn)評:本題考查兩個(gè)圓的位置關(guān)系的判斷,求出圓心距與半徑和與差的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=3,PB=2,PC=1,設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m,n,p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積,若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空數(shù)集A={a1,a2,a3,…,an}(n∈N*)中,所有元素的算術(shù)平均數(shù)記為E(A),即E(A)=
a1+a2+a3+…+an
n
.若非空數(shù)集B滿足下列兩個(gè)條件:①B⊆A;②E(B)=E(A).則稱B是A的一個(gè)“保均值子集”.據(jù)此,集合{2,3,4,5,6}的“保均值子集”有( �。�
A、5個(gè)B、6個(gè)C、7個(gè)D、8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1中,所有棱長都是4,E是CC1的中點(diǎn).
(1)求證:截面EA1B⊥面ABB1A;
(2)求截面EA1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx-
3
cosx的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�