【題目】已知函數(shù)

)當(dāng)時,求的最小值;

)若函數(shù)在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍

【答案】3 )見解析

【解析】試題分析:(1)當(dāng)a=-4時, , ,求出函數(shù)的導(dǎo)數(shù),由此即可求出函數(shù)的最小值;(2)由函數(shù)fx)在區(qū)間(0,1)上為單調(diào)函數(shù),得到其導(dǎo)函數(shù)的值在(0,1)恒大于等于零或恒小于等于零,從而轉(zhuǎn)化為:關(guān)于a的不等式,解此不等式即能求出實數(shù)a的取值范圍.

試題解析:(1,

得到的增區(qū)間為; ,得到的減區(qū)間為(0,1),

所以的最小值為

2,

設(shè);

,

所以在(0,1)上為增函數(shù),那么若函數(shù)在區(qū)間(0,1)上為單調(diào)增函數(shù),即,只需要令即可,解得

若函數(shù)在區(qū)間(0,1)上為單調(diào)減函數(shù),即只需令即可,解得,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足, .

1)當(dāng)點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標(biāo)原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,B1BB1AABBC,∠B1BC=90°,DAC的中點,ABB1D.

(1)求證:平面ABB1A1⊥平面ABC;

(2)在線段CC1(不含端點)上,是否存在點E,使得二面角EB1DB的余弦值為-?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角三角形中,的中點,是線段上一個動點,且,如圖所示,沿翻折至,使得平面平面

(1)當(dāng)時,證明:平面;

(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列結(jié)論正確的是(  )

A. 導(dǎo)函數(shù)為

B. 函數(shù)f(x)的圖象關(guān)于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形的邊長為2, 分別在三邊上, 的中點,

(Ⅰ)當(dāng)時,求的大;

(Ⅱ)求的面積的最小值及使得取最小值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】金磚國家領(lǐng)導(dǎo)人第九次會晤于2017年9月3日至5日在中國福建廈門市舉行,為了在金磚峰會期間為來到廈門的外國嘉賓提供服務(wù),培訓(xùn)部對兩千余名志愿者進(jìn)行了集中培訓(xùn),為了檢驗培訓(xùn)效果,現(xiàn)培訓(xùn)部從兩千余名志愿者中隨機(jī)抽取100名,按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者前去機(jī)場參加接待外賓禮儀測試,則應(yīng)從第3,4,5組中各抽取多少名志愿者?

(2)在(1)的條件下,若在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹接待外賓經(jīng)驗感受,求第4組至少有1名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過點.

(1)求橢圓方程;

(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

同步練習(xí)冊答案