已知
a
=(1,2)
,
b
=(2x,-3)
,且
a
b
,則x=( 。
A、-3
B、0
C、x=16
D、x=-
3
4
考點:平行向量與共線向量,平面向量的坐標運算
專題:平面向量及應(yīng)用
分析:直接利用向量共線的充要條件求解即可.
解答: 解:
a
=(1,2)
b
=(2x,-3)
,且
a
b
,
∴-3=4x,
解得x=-
3
4

故選:D.
點評:本題考查向量共線的充要條件的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
、
b
為非零向量,已知命題p:若|
a
|=2sin
π
24
,|
b
|=4cos
π
24
,
a
b
=1,則
a
b
的和
π
12
;命題q:若函數(shù)f(x)=(x
a
+
b
)(
a
-x
b
)的圖象關(guān)于y軸對稱,則
a
=
b
.下列命題正確的是( 。
A、p∧q
B、p∧(¬q)
C、(¬p)∧q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
5-2
6
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|-3.
(1)畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)遞增區(qū)間;
(2)判斷y=f(x)的奇偶性,并求y=f(x)的值域;
(3)方程f(x)=k+1有兩解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
2
)
,且tan(α+
π
4
)=3
,則log5(sinα+2cosα)+log5(3sinα+cosα)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是R上周期為5的奇函數(shù),且滿足f(1)=1,f(2)=3,則f(8)+f(4)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x0∈R,x02+2x0+2≤0”,則命題p的否定?p是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M、N分別是對角線AB1、BC1上的點,且
B1M
MA
=
C1N
NB
,求證:MN∥平面A1B1C1D1(寫出三種作法)

查看答案和解析>>

同步練習(xí)冊答案