7.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的離心率為e,則“e>$\sqrt{2}$”是“0<a<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 運(yùn)用雙曲線的離心率公式,結(jié)合a,b,c的關(guān)系,由充分必要條件的定義,以及不等式的性質(zhì),即可得到結(jié)論.

解答 解:由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+4}}{a}$=$\sqrt{1+\frac{4}{{a}^{2}}}$,
若e>$\sqrt{2}$,即$\sqrt{1+\frac{4}{{a}^{2}}}$>$\sqrt{2}$,
即有$\frac{4}{{a}^{2}}$>1,解得0<a<2.
由0<a<2,推不到0<a<1;
由0<a<1,可得e=$\sqrt{1+\frac{4}{{a}^{2}}}$>$\sqrt{5}$>$\sqrt{2}$,
由充分必要條件的定義,可得
“e>$\sqrt{2}$”是“0<a<1”的必要不充分條件.
故選:B.

點(diǎn)評 本題考查充分必要條件的判斷,注意運(yùn)用雙曲線的離心率公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.M={(x,y)|y=x-1},N={(x,y)|y=ex-2},則M∩N中有多少個元素(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F(2,0),以F為圓心,F(xiàn)O為半徑的圓與雙曲線的兩條漸近線分別交于A,B(不同于O),當(dāng)|$\overrightarrow{AB}$|取最大值時雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線C:${x^2}-\frac{y^2}{8}=1$的左右焦點(diǎn)分別是F1,F(xiàn)2,過F2的直線l與C的左右兩支分別交于A,B兩點(diǎn),且|AF1|=|BF1|,則|AB|=( 。
A.$2\sqrt{2}$B.3C.4D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于雙曲線$\frac{x^2}{16}-\frac{y^2}{4}=1$與$\frac{y^2}{16}-\frac{x^2}{4}=1$的焦距和漸近線,下列說法正確的是( 。
A.焦距相等,漸近線相同B.焦距相等,漸近線不相同
C.焦距不相等,漸近線相同D.焦距不相等,漸近線不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{4}$-y2=1的右頂點(diǎn)到該雙曲線一條漸近線的距離為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{2\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,a2+a3=8,前7項(xiàng)和S7=49,則數(shù)列{an}的公差等于( 。
A.1B.2C.$\frac{20}{3}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A1,A2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點(diǎn),以線段A1A2為直徑的圓與雙曲線C的漸近線的一個交點(diǎn)為(1,$\sqrt{3}$),則C的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1作圓x2+y2=a2的一條切線與雙曲線的漸近線在第二象限內(nèi)交于點(diǎn)A,同時這條切線交雙曲線的右支于點(diǎn)B,且|AB|=|BF2|,則雙曲線的漸近線的斜率為( 。
A.±2B.±$\sqrt{5}$C.±3D.±5

查看答案和解析>>

同步練習(xí)冊答案