不等式2|x|+|x-1|<2的解集是
 
分析:由原不等式可得①
x<0
-2x+1-x<2
,或 ②
0≤x<1
2x+1-x<2
,或③
x≥1
2x+x-1<2
,
所求不等式的解集是①②③解集的并集.
解答:解:不等式2|x|+|x-1|<2;
即 ①
x<0
-2x+1-x<2
,或 ②
0≤x<1
2x+1-x<2
,或③
x≥1
2x+x-1<2
,
解①得-
1
3
<x<0,解②得0≤x<1,解③得   x∈∅,
故原不等式的解集是①②③解集的并集,故原不等式的解集為(-
1
3
,1)
,
故答案為:(-
1
3
,1)
點評:把絕對值不等式進行等價轉(zhuǎn)化為與之等價的3個不等式組來解,體現(xiàn)了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、A.化極坐標(biāo)方程ρ2cosθ-ρ=0為直角坐標(biāo)方程為
x2+y2=0或x=1

B.不等式|2-x|+|x+1|≤a對任意x∈[0,5]恒成立的實數(shù)a的取值范圍為
[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當(dāng)m=1時,設(shè)M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x+a>0在A上有解,求實數(shù)a的取值范圍.
解:令f(x)=21-x+a,因為f(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上單調(diào)遞減
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
學(xué)習(xí)以上問題的解法,解決下面的問題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;
②設(shè)B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•渭南二模)(不等式選講)不等式|2-x|+|x+1|<a對于任意x∈[0,6]恒成立的實數(shù)a的集合為
{a|a≥11}
{a|a≥11}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A)選修4-1:幾何證明選講
如圖,⊙O的割線PAB交⊙O于A,B兩點,割線PCD經(jīng)過圓心交⊙O于C,D兩點,若PA=2,AB=4,PO=5,則⊙O的半徑長為
13
13


(B)選修4-4:坐標(biāo)系與參數(shù)方程
參數(shù)方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中當(dāng)t為參數(shù)時,化為普通方程為
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)選修4-5:不等式選講
不等式|2-x|+|x+1|≤a對于任意x∈[0,5]恒成立的實數(shù)a的集合為
{a|a≥9}
{a|a≥9}

查看答案和解析>>

同步練習(xí)冊答案