【題目】重慶一中將要舉行校園歌手大賽,現(xiàn)有33女參加,需要安排他們的出場(chǎng)順序.(結(jié)果用數(shù)字作答

1)如果3個(gè)女生都不相鄰,那么有多少種不同的出場(chǎng)順序?

2)如果女生甲在女生乙的前面(可以不相鄰),那么有多少種不同的出場(chǎng)順序?

3)如果3位男生都相鄰,且女生甲不在第一個(gè)出場(chǎng),那么有多少種不同的出場(chǎng)順序?

【答案】1;(2;(3

【解析】

1)不相鄰問(wèn)題插空法,先排男生,后將女生插空即可;

2)先計(jì)算全排列,再倍除每一次全排列中甲乙的全排列即可;

3)將3個(gè)男生進(jìn)行捆綁,再進(jìn)行排列.

1)先排3個(gè)男生,總共有種可能;

再在產(chǎn)生的四個(gè)空中,選出3個(gè),將女生進(jìn)行排列,有種可能,

故所有不同出場(chǎng)順序有:;

2)先計(jì)算全部的排列可能有:,

因?yàn)槊恳淮稳帕,甲乙都?/span>種可能,

故甲和乙定序的排列有:;

3)將3個(gè)男生進(jìn)行捆綁后,總共有4個(gè)元素進(jìn)行排列,

先從甲女生以外的3個(gè)元素中選取1個(gè)第一個(gè)出場(chǎng),

再對(duì)剩余3個(gè)元素進(jìn)行全排列,

同時(shí)對(duì)3個(gè)男生也要進(jìn)行全排列,

故所有的可能有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且兩焦點(diǎn)的距離為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為.

1)求橢圓的方程;

2)過(guò)點(diǎn)的直線交橢圓兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的極小值為1.

(1)求a的值;

(2)當(dāng)時(shí),對(duì)任意,有成立,求整數(shù)b的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.

(1)求橢圓的方程;

(2)斜率為的直線與橢圓交于,兩點(diǎn),線段的中點(diǎn)在直線上,求直線軸交點(diǎn)縱坐標(biāo)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校從參加高二年級(jí)期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.

分組

頻數(shù)

頻率

[4050

A

0.04

[50,60

4

0.08

[60,70

20

0.40

[7080

15

0.30

[80,90

7

B

[90,100]

2

0.04

合計(jì)

C

1

1)在給出的樣本頻率分布表中,求A,B,C的值;

2)補(bǔ)全頻率分布直方圖,并利用它估計(jì)全體高二年級(jí)學(xué)生期末數(shù)學(xué)成績(jī)的眾數(shù)、中位數(shù);

3)現(xiàn)從分?jǐn)?shù)在[8090),[90,100]9名同學(xué)中隨機(jī)抽取兩名同學(xué),求被抽取的兩名學(xué)生分?jǐn)?shù)均不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖所示,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,EF分別為PC的三等分點(diǎn).

1)證明:AF∥平面EBD;

2)已知AP=AD=1AB=2,求二面角E-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

(1)求C1的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知P是C2上參數(shù)對(duì)應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線的距離取得最大值時(shí),點(diǎn)Q的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若,試判斷函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)上為增函數(shù),求整數(shù)的最大值.

(可能要用到的數(shù)據(jù): ,

查看答案和解析>>

同步練習(xí)冊(cè)答案