設(shè)數(shù)列滿足,若數(shù)列滿足:,且當(dāng) 時,
(I) 求 ;
(II)證明:,(注:).
(I)
(II)注意
 

當(dāng)時,


,即。

試題分析:(I)   由,
所以為等比數(shù)列;所以
(II)由,得
②; 由②-①得:,則
 
當(dāng)時,


,即
點(diǎn)評:典型題,本題綜合性較強(qiáng),處理的方法多樣。涉及數(shù)列不等式的證明問題,提供了“放縮、求和、證明”和“數(shù)學(xué)歸納法”等證明方法,能拓寬學(xué)生的視野。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b1(a2-a1)=b2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cnan bn,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,++,,以表示的前項(xiàng)和,則使得達(dá)到最小值的是(  。
A.37和38B.38C.37D.36和37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若兩個等差數(shù)列的前項(xiàng)和分別為 、,且滿足,則的值為  ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來順序組成一個新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是等差數(shù)列,公差的前項(xiàng)和,已知.
(1)求數(shù)列的通項(xiàng)公式
(2)令=,求數(shù)列的前項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中中,       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和,則雙曲線的漸近線方程為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列
(1)觀察規(guī)律,寫出數(shù)列的通項(xiàng)公式,它是個什么數(shù)列?
(2)若,設(shè) ,求
(3)設(shè),為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

同步練習(xí)冊答案