分析 設(shè)出邊長,利用向量的數(shù)量積公式化簡求解即可.
解答 解:設(shè)正五邊形ABCDE的邊長為a.$|\overrightarrow{AD}|cos<\overrightarrow{AB},\overrightarrow{AD}>$=$|\overrightarrow{AO}|=\frac{1}{2}|\overrightarrow{AB}|$.
∵$\overrightarrow{AB}$•$\overrightarrow{AD}$=8,可得:|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|cos$<\overrightarrow{AB},\overrightarrow{AD}>$=8,即$\frac{1}{2}|\overrightarrow{AB}||\overrightarrow{AB}|=8$,即$\frac{1}{2}{a}^{2}=8$,解得a=4.
故答案為:4.
點評 本題考查平面向量的數(shù)量積的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\overrightarrow$ | B. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\frac{1}{2}$$\overrightarrow$ | C. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{2}$$\overrightarrow$ | D. | $\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{m}^{2}}$ | B. | $\frac{1}{m}$ | C. | 2m | D. | $\frac{2}{m}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,+∞) | B. | (1,$\frac{1}{e}$) | C. | [e,+∞) | D. | (e,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com