【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)用表示中的最大值,為的導(dǎo)函數(shù),設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
【答案】(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(2);(3)詳見(jiàn)解析.
【解析】
(1)求導(dǎo)后求出、的解集后即可得解;
(2)轉(zhuǎn)化條件得在上恒成立,即在上恒成立,令,求導(dǎo)后求得的最大值即可得解;
(3)利用導(dǎo)數(shù)證明,進(jìn)而可證,即可得證.
(1)因?yàn)?/span>,
所以,
令得,
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減;
所以函數(shù)在上的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(2)由(1)知,
當(dāng)時(shí),恒成立,故恒成立;
當(dāng)時(shí),,又因?yàn)?/span>恒成立,
所以在上恒成立,
所以,即在上恒成立,
令,則,
由,
令得,易得在上單調(diào)遞增,在上單調(diào)遞減,
所以,
所以,即,
綜上可得.
(3)證明:設(shè),則,
所以在上單調(diào)遞增,所以,即,
所以
,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著食品安全問(wèn)題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來(lái)越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問(wèn)題.
(1)在有機(jī)蔬菜的種植過(guò)程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表
使用堆漚肥料(千克) | 2 | 4 | 5 | 6 | 8 |
產(chǎn)量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂(lè)購(gòu)”生鮮超市以每份15元的價(jià)格賣(mài)給顧客,如果當(dāng)天前8小時(shí)賣(mài)不完,則超市通過(guò)促銷以每份5元的價(jià)格賣(mài)給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);
前8小時(shí)內(nèi)的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數(shù) | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),當(dāng)購(gòu)進(jìn)17份比購(gòu)進(jìn)18份的利潤(rùn)的期望值大時(shí),求的取值范圍.
附:回歸直線方程為,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C1:x2=2py(p>0),圓C2:x2+y2﹣8y+12=0的圓心M到拋物線C1的準(zhǔn)線的距離為,點(diǎn)P是拋物線C1上一點(diǎn),過(guò)點(diǎn)P,M的直線交拋物線C1于另一點(diǎn)Q,且|PM|=2|MQ|,過(guò)點(diǎn)P作圓C2的兩條切線,切點(diǎn)為A、B.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)求直線PQ的方程及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫(huà)出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬(wàn)元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬(wàn)元.
其中正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若,求曲線與直線的兩個(gè)交點(diǎn)之間的距離;
(2)若曲線上的點(diǎn)到直線距離的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列說(shuō)法:①“”是“”的充分不必要條件;②命題“,”的否定是“,”;③小趙、小錢(qián)、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件為“4個(gè)人去的景點(diǎn)不相同”,事件為“小趙獨(dú)自去一個(gè)景點(diǎn)”,則;④設(shè),其正態(tài)分布密度曲線如圖所示,那么向正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值是6587.(注:若,則,)其中正確說(shuō)法的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】紙張的規(guī)格是指紙張制成后,經(jīng)過(guò)修整切邊,裁成一定的尺寸.現(xiàn)在我國(guó)采用國(guó)際標(biāo)準(zhǔn),規(guī)定以、、、、、等標(biāo)記來(lái)表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①、、、、所有規(guī)格的紙張的幅寬(以表示)和長(zhǎng)度(以表示)的比例關(guān)系都為;②將紙張沿長(zhǎng)度方向?qū)﹂_(kāi)成兩等分,便成為規(guī)格,紙張沿長(zhǎng)度方向?qū)﹂_(kāi)成兩等分,便成為規(guī)格,…,如此對(duì)開(kāi)至規(guī)格.現(xiàn)有、、、、紙各一張.若紙的寬度為,則紙的面積為________;這張紙的面積之和等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿分150分,物理滿分100分)
分組 | |||||
頻數(shù) | 6 | 9 | 20 | 10 | 5 |
(1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;
(2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);
(3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,它們所在的平面互相垂直,DF⊥平面ABCD且DF.
(1)求證:EF//平面ABCD;
(2)若∠ABC=∠BCE,求二面角A﹣BF﹣E的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com