(14分)如圖,在直三棱柱中,,點是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)求異面直線與所成角的余弦值.
(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)異面直線AC1與B1C所成角的余弦值為。
【解析】(I)由題目條件可知,又因為,D為AB的中點,所以,所以.
(II)連接BC1交B1C交于O點,連接OD,則OD//AC1,所以平面.
(III)在(I)的基礎(chǔ)上可知就是異面直線與所成角,然后解三角形求角即可.
(Ⅰ)∵直三棱柱ABC—A1B1C1中
,
∴…………1
又,…………2
………………………3
∴……………………4
(Ⅱ)設(shè)CB1與C1B的交點為E,連結(jié)DE,…………….5
∵D是AB的中點,E是BC1的中點,
∴DE//AC1,…………………………………………7
∵DE平面CDB1,AC1平面CDB1,………….8
∴AC1//平面CDB1……………………………………9
(Ⅲ)∵DE//AC1,∴∠CED或其補角為AC1與B1C所成的角……..10
在△CED中,ED=-------------12
∴異面直線AC1與B1C所成角的余弦值為………………………14
科目:高中數(shù)學(xué) 來源: 題型:
(2009江蘇卷)(本小題滿分14分)
如圖,在直三棱柱中,、分別是、的中點,點在上,。
求證:(1)EF∥平面ABC;
(2)平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
本小題滿分14分)
如圖,在直三棱柱中,,,,點、分別是、的中點.
(Ⅰ)求證:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求多面體A1B1C1BD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇北四市(徐、連、淮、宿)高三元月調(diào)研測試數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)如圖,在直三棱柱中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點
(1)求證:DE∥平面ABC;
(2)求三棱錐E-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省揚州市高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題14分)
如圖,在直三棱柱中,,點在邊上,。
(1)求證:平面;
(2)如果點是的中點,求證:平面 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com