已知焦點為F1(-2,0)、F2(2,0)的橢圓與直線l:x+y-9=0有公共點,求橢圓長軸長的最小值.

解:如圖所示,可設(shè)P為橢圓與直線l的公共點,則|PF1|+|PF2|=2a,所以問題轉(zhuǎn)化為當(dāng)P在l上運動時,求|PF1|+|PF2|的最小值.作F2關(guān)于l的對稱點F2′(x0,y0),則

解得即F2′(9,7).所以|PF1|+|PF2|=|PF1|+|PF2′|=.

即橢圓長軸長的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點為F1(-1,0),F(xiàn)2(1,0)的橢圓經(jīng)過點(1,
2
2
),直線l過點F2與橢圓交于A、B兩點,其中O為坐標(biāo)原點.
(1)求
OA
OB
的范圍;
(2)若
OA
+
OB
與向量
a
=(-2
2
,1)
共線,求
OA
OB
的值及△AOB的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知焦點為F1(-1,0),F(xiàn)2(1,0)的橢圓經(jīng)過點(1,數(shù)學(xué)公式),直線l過點F2與橢圓交于A、B兩點,其中O為坐標(biāo)原點.
(1)求數(shù)學(xué)公式的范圍;
(2)若數(shù)學(xué)公式與向量數(shù)學(xué)公式共線,求數(shù)學(xué)公式的值及△AOB的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省邵陽市云水中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知焦點為F1(-1,0),F(xiàn)2(1,0)的橢圓經(jīng)過點(1,),直線l過點F2與橢圓交于A、B兩點,其中O為坐標(biāo)原點.
(1)求的范圍;
(2)若與向量共線,求的值及△AOB的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳州市鐵路一中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知焦點為F1(-1,0),F(xiàn)2(1,0)的橢圓經(jīng)過點(1,),直線l過點F2與橢圓交于A、B兩點,其中O為坐標(biāo)原點.
(1)求的范圍;
(2)若與向量共線,求的值及△AOB的外接圓方程.

查看答案和解析>>

同步練習(xí)冊答案