先后拋擲兩枚骰子,出現(xiàn)點(diǎn)數(shù)之和為6的概率是____________

解析試題分析:先后拋擲兩枚骰子,其結(jié)果有:
共36種情況。其中出現(xiàn)點(diǎn)數(shù)和為6的有,共5種情況,所以出現(xiàn)點(diǎn)數(shù)之和為6的概率是
考點(diǎn):古典概型;隨機(jī)事件的概率。
點(diǎn)評(píng):在列舉基本事件法時(shí)候,要注意一定的順序,不然容易漏掉,屬于基礎(chǔ)題型。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

先后拋擲硬幣三次,則至少一次正面朝上的概率是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)隨機(jī)變量ξ只能取5,6,7,……,16這12個(gè)值,且取每一個(gè)值的概率均相等,則P(ξ>8)=         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知隨機(jī)變量,若,則等于       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

從甲、乙、丙、丁四個(gè)人中任選兩名志愿者,則甲被選中的概率是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在等腰直角三角形ABC中,過(guò)直角頂點(diǎn)C在內(nèi)部作一條射線,與線段交與點(diǎn),則的概率是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)主要生產(chǎn)甲、乙兩種品牌的空調(diào),由于受到空調(diào)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)空調(diào)的利潤(rùn)與該空調(diào)首次出現(xiàn)故障的時(shí)間有關(guān),甲、乙兩種品牌空調(diào)的保修期均為3年,現(xiàn)從該廠已售出的兩種品牌空調(diào)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:

品牌


首次出現(xiàn)故障時(shí)間
x年







空調(diào)數(shù)量(臺(tái))
1
2
4
43
2
3
45
每臺(tái)利潤(rùn)(千元)
1
2
2.5
2.7
1.5
2.6
2.8
 
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲品牌空調(diào)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的空調(diào)均能售出,記生產(chǎn)一臺(tái)甲品牌空調(diào)的利潤(rùn)為X1,生產(chǎn)一臺(tái)乙品牌空調(diào)的利潤(rùn)為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計(jì)今后這兩種品牌空調(diào)銷(xiāo)量相當(dāng),但由于資金限制,只能生產(chǎn)其中一種品牌空調(diào),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的空調(diào)?說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

有3張不透明的卡片,除正面分別寫(xiě)有不同的數(shù)字-1、-2、3外,其它均相同.將這三張卡片背面朝上洗勻后,第一次從中隨機(jī)抽取一張,并把這張卡片標(biāo)有的數(shù)字記作一次函數(shù)表達(dá)式中的,第二次從余下的兩張卡片中再隨機(jī)抽取一張,上面標(biāo)有的數(shù)字記作一次函數(shù)表達(dá)式中的則一次函數(shù)的圖象經(jīng)過(guò)二、三、四象限的概率是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在區(qū)間上隨機(jī)取一實(shí)數(shù),則該實(shí)數(shù)滿(mǎn)足不等式的概率為 

查看答案和解析>>

同步練習(xí)冊(cè)答案