4.一枚硬幣連續(xù)擲2次,求:
(1)寫出它的基本事件空間;
(2)有一次正面朝上的概率是多少?

分析 (1)一枚硬幣連續(xù)擲2次,利用列舉法能求出基本事件空間.
(2)利用列舉法求出有一次正面朝上包含的基本事件,由此能求出有一次正面朝上的概率.

解答 解:(1)一枚硬幣連續(xù)擲2次,
基本事件空間:Ω={正正、正反、反正、反反}.
(2)有一次正面朝上包含的基本事件{正反、反正},
∵基本事件總數(shù)有4個,滿足要求的有2個
∴有一次正面朝上的概率p=$\frac{2}{4}=\frac{1}{2}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.在△ABC中,已知角A、B、C所對的邊為a、b、c,若ccosB=12,bsinC=5,則c=13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)是定義在(-∞,0)上的減函數(shù),則不等式f(x-1)>f(2x+1)的解集{x|-2<x<-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|x2-x-2<0},B={x|log4x<0.5},則( 。
A.A∩B=∅B.A∩B=BC.UA∪B=RD.A∪B=B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若等邊△ABC的邊長為2$\sqrt{3}$,平面內(nèi)一點M滿足$\overrightarrow{CM}$=$\frac{1}{6}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{AC}$,則$\overrightarrow{MA}•\overrightarrow{MB}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知tanα=3,則$\frac{sinα+3cosα}{2sinα+5cosα}$=$\frac{6}{11}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若tanθ=-3,則sinθ(sinθ-2cosθ)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+2x+2,x∈[a,a+2],a∈R.
(1)求函數(shù)的最小值;
(2)求函數(shù)的最大值;
(3)若f(x)的最小值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在等比數(shù)列{an}中,a2+a8=15,a3a7=36,則$\frac{{{a_{19}}}}{{{a_{13}}}}$為( 。
A.$\frac{1}{4}$B.4C.$\frac{1}{4}$或4D.-$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案