14.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(9,3),則f(1)-f(2)=( 。
A.1$-\sqrt{2}$B.3C.$\sqrt{2}-1$D.1

分析 用待定系數(shù)法求出冪函數(shù)f(x)的解析式,再計(jì)算f(x)的值.

解答 解:設(shè)冪函數(shù)f(x)=xα,
其圖象過點(diǎn)(9,3),
∴9α=3,
解得α=$\frac{1}{2}$,
∴f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$,
∴f(1)-f(2)=1-$\sqrt{2}$.
故選:A.

點(diǎn)評 本題考查了冪函數(shù)的解析式與計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知 f (x)=sin(x+$\frac{π}{2}$),g(x)=sin(π-x),則下列結(jié)論中正確的是( 。
A.函數(shù) y=f (x)•g ( x) 的周期為 2
B.函數(shù) y=f (x)•g ( x) 的最大值為 1
C.將f (x)的圖象向左平移$\frac{π}{2}$個單位后得到 g(x)的圖象
D.y=f(x)+g(x)的一個對稱中心是($\frac{3}{4}π$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐P-ABC的四個頂點(diǎn)都在球O的表面上,PA⊥平面ABC,AB⊥BC,PA=2,AB=BC=1,則球O的表面積為(  )
A.$\sqrt{6}$πB.C.24πD.2$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在正方體ABCD-A1B1C1D1中挖去一個圓錐,得到一個幾何體M,已知圓錐頂點(diǎn)為正方形ABCD的中心,底面圓是正方形A1B1C1D1的內(nèi)切圓,若正方體的棱長為acm.
(1)求挖去的圓錐的側(cè)面積;
(2)求幾何體M的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)p:函數(shù)f(x)=lg(ax2$-x+\frac{1}{4}$a)的定義域?yàn)镽;
q:函數(shù)f(x)=$\frac{x+a}{x-1}$ 在(1,+∞)上單調(diào)遞減.若命題p∧q為假.
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=(x-1)2的圖象和函數(shù)g(x)=2x-1的圖象的交點(diǎn)個數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x$∈[\frac{1}{3},2]$時,求函數(shù)y=f(x-1)+f(x+1)的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A-BCD為正四面體,則其側(cè)面與底面所成角的余弦值為( 。
A.$\frac{1}{3}$B.$\sqrt{5}$C.2$\sqrt{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$則z=2x+y的最大值是8.

查看答案和解析>>

同步練習(xí)冊答案