某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未擊中,可以進(jìn)行第二次射擊,但目標(biāo)已在150m處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三射擊,此時(shí)目標(biāo)已在200m處,若第三次命中記1分,并停止射擊;若三次都未命中,則記0分.已知射手甲在100m處擊中目標(biāo)的概率為0.5,他的命中率與距離的平方成反比,且各次射擊都是獨(dú)立的,設(shè)這位射手在這次射擊比賽中的得分?jǐn)?shù)為ξ.
(I)求ξ的分布列;
(II)求ξ的數(shù)學(xué)期望.
分析:(I)設(shè)在xm處擊中目標(biāo)的概率為P(x),則依題意有P(x)=
k
x2
,又由題意知:
1
2
=
k
1002
,所以k=5000,則P(x)=
5000
x2
,從而在150m處擊中目標(biāo)的概率為
5000
1502
=
2
9
,在200m處擊中目標(biāo)的概率為
5000
2002
=
1
8
.由此能求出ξ的分布列.(II)利用ξ的分布列,能求出Eξ.
解答:解:(I)設(shè)在xm處擊中目標(biāo)的概率為P(x),
則依題意有P(x)=
k
x2
,
又由題意知:
1
2
=
k
1002
,
所以k=5000,則P(x)=
5000
x2
,…(3分)
從而在150m處擊中目標(biāo)的概率為
5000
1502
=
2
9
,…(5分)
在200m處擊中目標(biāo)的概率為
5000
2002
=
1
8
.…(6分)
于是P(ξ=0)=
1
2
×
7
9
×
7
8
=
49
144

P(ξ=1)=
1
2
×
7
9
×
1
8
=
7
144
,
P(ξ=2)=
1
2
×
2
9
=
1
9
,
P(ξ=3)=
1
2
,…(9分)
從而ξ的分布列如下:
ξ 0 1 2 3
P
49
144
7
144
1
9
1
2
…(10分)
(II)Eξ=
49
144
+1×
7
144
×2×
1
9
+3×
1
2
=
85
48
.     …(13分)
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,考查學(xué)生的運(yùn)算能力,考查學(xué)生探究研究問題的能力,解題時(shí)要認(rèn)真審題,理解古典概型的特征:試驗(yàn)結(jié)果的有限性和每一個(gè)試驗(yàn)結(jié)果出現(xiàn)的等可能性,體現(xiàn)了化歸的重要思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊,若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已經(jīng)在150米處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,已知射手甲在100m處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(1)求這名射手在三次射擊中命中目標(biāo)的概率;
(2)求這名射手比賽中得分的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)選手在距離目標(biāo)100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進(jìn)行第二次射擊,但需在距離目標(biāo)150m處,這時(shí)命中目標(biāo)記2分,且停止射擊.若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)需在距離目標(biāo)200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知選手甲的命中率與目標(biāo)的距離的平方成反比,他在100m處擊中目標(biāo)的概率為
12
,且各次射擊都相互獨(dú)立.
(Ⅰ)求選手甲在三次射擊中命中目標(biāo)的概率;
(Ⅱ)設(shè)選手甲在比賽中的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已在150m處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結(jié)束.已知射手甲在100m處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(1)求射手甲在這次射擊比賽中命中目標(biāo)的概率;
(2)求射手甲在這次射擊比賽中得分的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊; 若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已經(jīng)在150米處,這時(shí)命中記2分,且停止射擊; 若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊; 若三次都未命中,則記0分.已知射手甲在100米處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(Ⅰ)求這名射手分別在第二次、第三次射擊中命中目標(biāo)的概率及三次射擊中命中目標(biāo)的概率;
(Ⅱ)設(shè)這名射手在比賽中得分?jǐn)?shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案