數(shù)列{an}是等差數(shù)列S9=18,Sn=240,an-4=30(n>9),則n的值為    
【答案】分析:根據(jù)等差數(shù)列的性質(zhì)可知,項(xiàng)數(shù)之和相等的項(xiàng)的和相等,由S9=9a5=18得到a5的值,又得到a1+an=a5+an-4,然后利用等差數(shù)列的前n項(xiàng)和的公式表示出Sn讓其等于240,把a(bǔ)5和an-4的值代入得到關(guān)于n的方程,求出n即可.
解答:解:根據(jù)等差數(shù)列的性質(zhì)得S9=a1+a2+…+a9=9a5=18,所以a5=2,且a1+an=a5+an-4,
則Sn====240,即16n=240,解得n=15
故答案為:15
點(diǎn)評(píng):此題考查學(xué)生掌握等差數(shù)列的前n項(xiàng)和的公式,靈活運(yùn)用等差數(shù)列的性質(zhì),是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開(kāi)中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案