分析 (I)消參數(shù)得到直線l的普通方程,對ρ=acosθ兩邊平方得出曲線C的普通方程;
(II)根據(jù)直線與圓相切得出圓心到直線的距離等于半徑,列方程解出a.
解答 解:(I)∵$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$,∴x=1+y,即x-y-1=0.∴直線l的普通方程為x-y-1=0.
∵ρ=acosθ,∴ρ2=aρcosθ,∴曲線C的普通方程為x2+y2-ax=0.即(x-$\frac{a}{2}$)2+y2=$\frac{{a}^{2}}{4}$.
(II)由(1)知曲線C的圓心為($\frac{a}{2}$,0),半徑為$\frac{a}{2}$.
∵直線l與曲線C相切,∴$\frac{|\frac{a}{2}-1|}{\sqrt{2}}=\frac{a}{2}$,解得a=2$\sqrt{2}$-2.
點評 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$<a<2$\sqrt{3}$ | B. | 2$\sqrt{2}$<a<$\frac{7}{2}$ | C. | 3<a<$\frac{7}{2}$ | D. | 3<a<2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com