【題目】某高校健康社團為調(diào)查本校大學(xué)生每周運動的時長,隨機選取了80名學(xué)生,調(diào)查他們每周運動的總時長(單位:小時),按照6組進行統(tǒng)計,得到男生、女生每周運動的時長的統(tǒng)計如下(表12),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達人”.

1:男生

時長

人數(shù)

2

8

16

8

4

2

2:女生

時長

人數(shù)

0

4

12

12

8

4

1)從每周運動時長不小于20小時的男生中隨機選取2人,求選到“運動達人”的概率;

2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認為本校大學(xué)生是否為“運動合格者”與性別有關(guān).

每周運動的時長小于15小時

每周運動的時長不小于15小時

總計

男生

女生

總計

參考公式:,其中.

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

【答案】(1);(2)填表見解析,沒有99%的把握認為本校大學(xué)生是否為“運動合格者”與性別有關(guān).

【解析】

1)由題可知共有個基本事件,“運動達人”的可能結(jié)果為個,

求得概率即可;

(2)根據(jù)題意列出列聯(lián)表,代入公式計算結(jié)果,然后判斷即可.

1)每周運動的時長在中的男生有4人,在中的男生有2人,

則共有個基本事件,

其中中至少有1人被抽到的可能結(jié)果有

個,

所以抽到“運動達人”的概率為;

2)每周運動的時長小于15小時的男生有26人,女生有16人;

每周運動的時長不小于15小時的男生有14人,女生有24.

可得下列列聯(lián)表:

每周運動的時長小于15小時

每周運動的時長不小于15小時

總計

男生

26

14

40

女生

16

24

40

總計

42

38

80

,

所以沒有99%的把握認為本校大學(xué)生是否為“運動合格者”與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,ADBC是等腰梯形CDEF的兩條高,,點M是線段AE的中點,將該等腰梯形沿著兩條高ADBC折疊成如圖乙所示的四棱錐P-ABCDE,F重合,記為點P.

1)求證:;

2)求點M到平面BDP距離h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時間的關(guān)系如下表所示:

土地使用面積(單位:畝)

1

2

3

4

5

管理時間(單位:月)

8

10

13

25

24

并調(diào)查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

150

50

女性村民

50

1)求出相關(guān)系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關(guān)?

2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關(guān)性?

3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。

參考公式:

其中。臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】松江有軌電車項目正在如火如荼的進行中,通車后將給市民出行帶來便利. 已知某條線路通車后,電車的發(fā)車時間間隔(單位:分鐘)滿足. 經(jīng)市場調(diào)研測算,電車載客量與發(fā)車時間間隔相關(guān),當(dāng)時電車為滿載狀態(tài),載客量為人,當(dāng)時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為分鐘時的載客量為.記電車載客量為.

1)求的表達式,并求當(dāng)發(fā)車時間間隔為分鐘時,電車的載客量;

2)若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)上的單調(diào)遞增區(qū)間;

2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩個定點,如果對于常數(shù),在函數(shù),的圖像上有且只有6個不同的點,使得成立,那么的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求a的值;

(2)在(1)的條件下,若存在,使,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:直線關(guān)于圓的圓心距單位圓心到直線的距離與圓的半徑之比.

1)設(shè)圓,求過點的直線關(guān)于圓的圓心距單位的直線方程.

2)若圓軸相切于點,且直線關(guān)于圓的圓心距單位,求此圓的方程.

3)是否存在點,使過點的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的圓心距單位始終相等?若存在,求出相應(yīng)的點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列說法正確的是__________.的值域是當(dāng)時,方程有兩個不等實根;若函數(shù)有三個零點時,則;經(jīng)過有三條直線與相切.

查看答案和解析>>

同步練習(xí)冊答案