精英家教網 > 高中數學 > 題目詳情

【題目】在直三棱柱中,,底面三邊長分別為35,7,是上底面所在平面內的動點,若三棱錐的外接球表面積為,則滿足題意的動點的軌跡對應圖形的面積為________.

【答案】

【解析】

外接圓圓心,作平面,根據三棱錐外接球的性質可知球心上一點;在中,結合正余弦定理可求得的外接圓半徑,進而勾股定理可求得球心到平面的距離,再利用勾股定理求得,可得點軌跡為圓,進而求得結果.

不妨設,

外接圓圓心,作平面,交平面于點,由三棱錐外接球的性質可知,球心上一點.

設三棱錐外接球半徑為,

三棱錐外接球表面積,.

中,由余弦定理得:,

,由正弦定理得:

,即,,

,

即點的軌跡對應的圖形是以為圓心,為半徑的圓,

對應的圖形面積為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐中,,,點分別為的中點.

(1)證明:平面∥平面;

(2)若,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知橢圓:()的離心率為,右準線方程是直線l,點P為直線l上的一個動點,過點P作橢圓的兩條切線,切點分別為AB(點Ax軸上方,點Bx軸下方).

1)求橢圓的標準方程;

2)①求證:分別以為直徑的兩圓都恒過定點C;

②若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

1)求橢圓C的方程;

2)若點A、B為橢圓C的左右頂點,直線x軸交于點D,點P是橢圓C上異于A、B的動點,直線APBP分別交直線E、F兩點,當點P在橢圓C上運動時,是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:

根據該折線圖可知,下列說法錯誤的是( )

A. 該超市2018年的12個月中的7月份的收益最高

B. 該超市2018年的12個月中的4月份的收益最低

C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益

D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯表:

分數不少于120

分數不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯表;并判斷是否有99%的把握認為高三學生的數學成績與學生線上學習時間有關;

2)在上述樣本中從分數不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的內角所對的邊分別為_________,且.現從:①,②,③這三個條件中任選一個,補充在以上問題中,并判斷這樣的是否存在,若存在,求的面積_________;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知六面體如圖所示,平面,,,是棱上的點,且滿足.

1)求證:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】春節(jié)過后,甲、乙、丙三人談論到有關部電影,的情況.

甲說:我沒有看過電影,但是有部電影我們三個都看過;

乙說:三部電影中有部電影我們三人中只有一人看過;

丙說:我和甲看的電影有部相同,有部不同.

假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數是(

A.B.C.D.部或

查看答案和解析>>

同步練習冊答案