已知橢圓(a>b>0)的一個(gè)焦點(diǎn)與拋物線(xiàn)y2=4x的焦點(diǎn)重合,且截拋物線(xiàn)的準(zhǔn)線(xiàn)所得弦長(zhǎng)為,直線(xiàn)l:y=kx+m交橢圓于不同的兩點(diǎn)A,B,且l總與以原點(diǎn)為圓心的單位圓相切.
(I)求該橢圓的方程;
(II)當(dāng)且滿(mǎn)足時(shí),求S△AOB的取值范圍.
【答案】分析:(I)由拋物線(xiàn)y2=4x可知焦點(diǎn)為(1,0),準(zhǔn)線(xiàn)為x=-1,橢圓截直線(xiàn)x=-1所得的弦長(zhǎng)為得上交點(diǎn)為(-1,),代入結(jié)合1=a2-b2可求
II)由直線(xiàn)y=kx+m與圓x2+y2=1相切可得,由可得(1+2k2)x2+4kmx+2m2-2=0,△=8k2>0可得k≠0
設(shè)A(x1,y1),B(x2,y2)則,y1y2=(kx1+m)(kx2+m)=,而=,結(jié)合可求k的范圍,根據(jù)表示所求的面積,結(jié)合基本不等式可求
解答:解:(I)拋物線(xiàn)y2=4x的焦點(diǎn)為(1,0),準(zhǔn)線(xiàn)為x=-1
∵橢圓截直線(xiàn)x=-1所得的弦長(zhǎng)為得上交點(diǎn)為(-1,),代入得,且1=a2-b2
∴b2=1,a2=2
∴橢圓方程為
(II)∵直線(xiàn)y=kx+m與圓x2+y2=1相切
即m2=k2+1
可得(1+2k2)x2+4kmx+2m2-2=0
△=8k2>0可得k≠0
設(shè)A(x1,y1),B(x2,y2)則
y1y2=(kx1+m)(kx2+m)=
=λ,
可得,即
=
令u=k4+k2,

點(diǎn)評(píng):本題主要考查了利用橢圓與拋物線(xiàn)的性質(zhì)求解橢圓的方程,直線(xiàn)與橢圓的位置關(guān)系的應(yīng)用,方程的根與系數(shù)的關(guān)系的應(yīng)用及利用基本不等式求解函數(shù)的最值,綜合性較強(qiáng),運(yùn)算量較大,屬于綜合試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1(a>b>0)與雙曲線(xiàn)=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省、陽(yáng)東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線(xiàn)AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿(mǎn)足|AQ|=|AO|,求直線(xiàn)OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線(xiàn)的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線(xiàn)的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線(xiàn)l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

(1)求橢圓的方程;

(2)若直線(xiàn)與橢圓交于、兩點(diǎn),,求k的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案