【題目】在四棱錐中,,.為的中點.
(1)若點為的中點,求證:平面;
(2)當平面平面時,線段上是否存在一點,使得平面與平面所成銳二面角的大小為?若存在,求出點的位置,若不存在,請說明理由.
【答案】(1)證明見解析;(2)存在,.
【解析】
(1)利用線面平行的判定定理證明平面,平面,由面面平行的判定定理得到平面平面,再由面面平行的性質(zhì)即可得到平面;
(2) 以為坐標原點,分別以,為軸,建立空間直角坐標系,利用向量法求解即可.
證明:(1)連接,.由已知得,為等邊三角形,.
∵,,由余弦定理可得:
∴
∴,∴
又∵平面,平面
∴平面
∵為的中點,為的中點,∴.
又∵平面,平面
∴平面.
∵,平面
∴平面平面.
∵平面,∴平面.
(2)取中點為,連接,
因為,,所以,.
∵平面平面,且交線為,,面
∴平面.
,,以為坐標原點,分別以,為軸,建立空間直角坐標系.
,,,,.
設(shè),則可得
∵平面
∴平面的一個法向量為.
設(shè)平面的法向量為.
∵,
由得
取 得
設(shè)平面與平面所成銳二面角為,則
化簡得:,解得(舍),
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為32,48,現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調(diào)查.
Ⅰ應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?
Ⅱ若抽出的7人中有3人睡眠不足,4人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.
用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機變量X的數(shù)學(xué)期望和方差;
設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在河岸的一側(cè)修建一條休閑式人行道,進行圖紙設(shè)計時,建立了圖中所示坐標系,其中,在軸上,且,道路的前一部分為曲線段,該曲線段為二次函數(shù)在時的圖像,最高點為,道路中間部分為直線段,,且,道路的后一段是以為圓心的一段圓弧.
(1)求的值;
(2)求的大;
(3)若要在扇形區(qū)域內(nèi)建一個“矩形草坪”,在圓弧上運動,、在上,記,則當為何值時,“矩形草坪”面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,為中點,且平面,為線段上一動點,記.
(1)當時,求異面直線與所成角的余弦值;
(2)當與平面所成角的正弦值為時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若直線與曲線恒相切于同一定點,求直線的方程;
(2)若當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是正方形所在平面外一點,在面上的投影為,,,,有以下四個命題:
(1)面;
(2)為中點,且;
(3)以,作為鄰邊的平行四邊形面積是32;
(4)的內(nèi)切球半徑為.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com