19.已知雙曲線的漸近線方程為y=±$\frac{3}{4}$x,則此雙曲線的( 。
A.焦距為10B.實(shí)軸長(zhǎng)與虛軸長(zhǎng)分別為8與6
C.離心率e只能是$\frac{5}{4}$或$\frac{5}{3}$D.離心率e不可能是$\frac{5}{4}$或$\frac{5}{3}$

分析 利用雙曲線的漸近線方程,推出ab關(guān)系,然后求解離心率即可.

解答 解:雙曲線的漸近線方程為y=±$\frac{3}{4}$x,
當(dāng)雙曲線的焦點(diǎn)坐標(biāo)在x軸時(shí),$\frac{a}=\frac{3}{4}$,
可得$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{9}{16}$,解得e=$\frac{5}{4}$.
當(dāng)雙曲線的焦點(diǎn)坐標(biāo)在y軸時(shí),$\frac{a}=\frac{3}{4}$,
可得16a2=9c2-9a2,解得e=$\frac{5}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某市在一次降雨過(guò)程中,降雨量y(mm)與時(shí)間t(min)的函數(shù)關(guān)系可近似地表示為y=f(t)=$\sqrt{t}$,則在時(shí)刻t=40min的降雨強(qiáng)度為( 。
A.40mmB.40$\sqrt{10}$mmC.$\frac{1}{40}$mm/minD.$\frac{\sqrt{10}}{40}$mm/min

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在空間直角坐標(biāo)系O-xyz中,若O(0,0,0),A(0,2,0),B(2,0,0),C(2,2,2$\sqrt{3}$),則二面角C-OA-B的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在四棱錐P-ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC與平面ABCD所成角為45°
(1)若E為PC的中點(diǎn),求證:PD⊥平面ABE;
(2)若CD=$\sqrt{3}$,求點(diǎn)B到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)集合A=[0,1),B=[1,2],函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,若x0∈A,且f[f(x0)]∈A,則x0的取值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合M={x|2x+1>1},N={x|lnx≤1},則M∩N等于( 。
A.(-∞,e]B.(-1,1]C.(0,1)D.(0,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出v的值為( 。
A.210-1B.210C.310-1D.310

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)圓錐的底面圓半徑為3,高為4,則這個(gè)圓錐的側(cè)面積為( 。
A.$\frac{15π}{2}$B.24πC.15πD.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C的方程為x2-y=0)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
A.5000B.6667C.7500D.7854

查看答案和解析>>

同步練習(xí)冊(cè)答案