分析 由已知得0≤x0<1,從而$f({x}_{0})={x}_{0}+\frac{1}{2}$∈[$\frac{1}{2}$,$\frac{3}{2}$),由f(x0)∈[$\frac{1}{2},1$)和f(x0)∈[$1,\frac{3}{2}$)兩種情況分類討論經(jīng),能求出x0的取值.
解答 解:∵集合A=[0,1),B=[1,2],
函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{2},x∈A\\ 2({1-x}),x∈B\end{array}$,x0∈A,且f[f(x0)]∈A,
∴0≤x0<1,∴$f({x}_{0})={x}_{0}+\frac{1}{2}$∈[$\frac{1}{2}$,$\frac{3}{2}$),
當(dāng)f(x0)∈[$\frac{1}{2},1$)時(shí),即x0∈[0,$\frac{1}{2}$)時(shí),
f[f(x0)]=f(${x}_{0}+\frac{1}{2}$)=x0+1∈[1,2),
∵f[f(x0)]∈A,∴x0+1∈[0,1),不成立;
當(dāng)f(x0)∈[$1,\frac{3}{2}$)時(shí),即x0∈[$\frac{1}{2}$,1)時(shí),
f[f(x0)]=f(${x}_{0}+\frac{1}{2}$)=2(1-${x}_{0}-\frac{1}{2}$)=1-2x0,
∵f[f(x0)]∈A,即1-2x0∈[0,1),
由x0∈[$\frac{1}{2}$,1),得1-2x0∈(-1,0],
∴1-2x0=0,解得x0=$\frac{1}{2}$.
綜上,x0=0.
故答案為:$\frac{1}{2}$.
點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦距為10 | B. | 實(shí)軸長與虛軸長分別為8與6 | ||
C. | 離心率e只能是$\frac{5}{4}$或$\frac{5}{3}$ | D. | 離心率e不可能是$\frac{5}{4}$或$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{1}{64},1]$ | B. | $[\frac{1}{8},1]$ | C. | $(\frac{1}{64},1)$ | D. | $(\frac{1}{8},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com