是否存在這樣的實數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上與x軸恒有一個交點,且只有一個交點.若存在,求出范圍,若不存在,說明理由.
分析:此題考查的是函數(shù)與方程的綜合應用類問題.在解答時,先結合存在性問題的特點先假設存在a符合題意,然后將問題轉化為函數(shù)零點存在性的問題結合二次函數(shù)的特點即可獲得問題的解答,注意驗證.
解答:解:若實數(shù)a滿足條件,則只需f(-1)•f(3)≤0即可.
f(-1)•f(3)=(1-3a+2+a-1)•(9+9a-6+a-1)=4(1-a)(5a+1)≤0.所以a≤-
或a≥1.
檢驗:(1)當f(-1)=0時,a=1.所以f(x)=x
2+x.令f(x)=0,即x
2+x=0.得x=0或x=-1.
方程在[-1,3]上有兩根,不合題意,
故a≠1.
(2)當f(3)=0時,a=-
,此時f(x)=x
2-
x-
.令f(x)=0,即x
2-
x-
=0,解之得x=-
或x=3.方程在[-1,3]上有兩根,不合題意,故a≠-
.
綜上所述:a的取值范圍為a<-
或a>1.
點評:此題考查的是函數(shù)與方程的綜合應用類問題.在解答的過程當中充分體現(xiàn)了函數(shù)與方程的思想、零點存在性知識以及結果驗證的技巧.值得同學們體會反思.