【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個(gè)單位,再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點(diǎn)到直線的距離的最小值.
【答案】(1);; (2).
【解析】
(1)曲線的參數(shù)方程化簡(jiǎn)消參后得到普通方程,利用,對(duì)直線的極坐標(biāo)方程進(jìn)行化簡(jiǎn),得到的直角坐標(biāo)方程;
(2)根據(jù)變換規(guī)則,得到變換后的曲線的方程,寫出其參數(shù)方程,從而得到曲線上任一點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式,結(jié)合正弦型函數(shù)的值域,得到最小值.
(1)曲線的參數(shù)方程為(為參數(shù))
所以,兩式平方后相加得,
即曲線的普通方程為:.
直線的極坐標(biāo)方程為,
即
,
因?yàn)?/span>,
所以直線的直角坐標(biāo)方程為:
(2)曲線:向左平移2個(gè)單位,
得到,
再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來的
得到,
即曲線;
所以曲線的參數(shù)方程為(為參數(shù)),
設(shè)曲線上任一點(diǎn),
則點(diǎn)到直線的距離為:
則(其中),
當(dāng)時(shí),取最小值,為
所以點(diǎn)到直線的距離的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A的坐標(biāo)為(2,0),B是第一象限內(nèi)的一點(diǎn),以C為圓心的圓經(jīng)過OAB三點(diǎn),且圓C在點(diǎn)A,B處的切線相交于P,若P的坐標(biāo)為(4,2),則直線PB的方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù).
(1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;
(2)若時(shí),討論函數(shù)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測(cè)試,按成績(jī)分為優(yōu)秀、良好、一般、較差四個(gè)檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績(jī),其條形圖如下:
(1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生的成績(jī)與性別有關(guān).
合格 | 不合格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)學(xué)校為了解學(xué)生以前參加課外活動(dòng)的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個(gè)座談會(huì).
①座談會(huì)上抽取2名學(xué)生匯報(bào)以前參加課外活動(dòng)的情況,求恰好抽到測(cè)試成績(jī)一個(gè)優(yōu)秀與一個(gè)較差的學(xué)生的概率;
②為全面提高學(xué)生的體能,學(xué)校專門安排專職教師對(duì)全校測(cè)試成績(jī)較差的學(xué)生在課外活動(dòng)時(shí)進(jìn)行專項(xiàng)訓(xùn)練,通過一段時(shí)間的訓(xùn)陳后,測(cè)試合格率達(dá)到了.若某班有4名學(xué)生參加這個(gè)專項(xiàng)訓(xùn)陳,求訓(xùn)練后測(cè)試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.
附:K2,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)是橢圓上的點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率存在又不經(jīng)過原點(diǎn)的直線與圓相切,且與橢圓交于兩點(diǎn).探究:在橢圓上是否存在點(diǎn),使得,若存在,請(qǐng)求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,射線與圓交于點(diǎn),橢圓的方程為,以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系
(1)求點(diǎn)的直角坐標(biāo)和橢圓的參數(shù)方程;
(2)若為橢圓的下頂點(diǎn),為橢圓上任意一點(diǎn),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對(duì)株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分“植株死亡”和“植株存活”兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:)進(jìn)行統(tǒng)計(jì)規(guī)定:植株吸收在(包括)以上為“足量”,否則為“不足量”.現(xiàn)對(duì)該株植株樣本進(jìn)行統(tǒng)計(jì),其中“植株存活”的株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知“植株存活”但“制劑吸收不足量”的植株共株.
編號(hào) | ||||||||||||||||||||
吸收量 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過的前提下,認(rèn)為“植株的存活”與“制劑吸收足量”有關(guān)?
吸收足量 | 吸收不足量 | 合計(jì) | |
植株存活 | |||
植株死亡 | |||
合計(jì) |
(2)若在該樣本“制劑吸收不足量”的植株中隨機(jī)抽取株,求這株中恰有株“植株存活”的概率.
參考數(shù)據(jù):
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com