【題目】國際羽毛球比賽規(guī)則從2006年5月開始,正式?jīng)Q定實行21分的比賽規(guī)則和每球得分制,并且每次得分者發(fā)球,所有單項的每局獲勝分至少是21分,最高不超過30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時,獲勝的一方需超過對方2分才算取勝,直至雙方比分打成時,那么先到第30分的一方獲勝.在一局比賽中,甲發(fā)球贏球的概率為,甲接發(fā)球贏球的概率為,則在比分為,且甲發(fā)球的情況下,甲以贏下比賽的概率為( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門對已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬人,試估計有多少市民每年旅游費(fèi)用支出在7500元以上;
若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會繼續(xù)來該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來該景點(diǎn)游玩記2分,不來該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù),).
(Ⅰ)當(dāng)時,判斷直線與曲線的位置關(guān)系;
(Ⅱ)設(shè)直線與軸的交點(diǎn)為,且與曲線交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年9月24日國家統(tǒng)計局在慶祝中華人民共和國成立70周年活動新聞中心舉辦新聞發(fā)布會指出,1952年~2018年,我國GDP查679.1億元躍升至90.03萬億元,實際增長174倍;人均GDP從119元提高到6.46萬元,實際增長70倍.全國各族人民,砥礪奮進(jìn),頑強(qiáng)拼搏,實現(xiàn)了經(jīng)濟(jì)社會的跨越式發(fā)展.如圖是全國2010年至2018年GDP總量(萬億元)的折線圖.
注:年份代碼1~9分別對應(yīng)年份2010~2018.
(1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2019年全國GDP的總量.
附注:參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù);
回歸方程中斜率和截距的最小二乘法估計公式分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象的一個對稱中心為,則下列說法正確的是( )
A.直線是函數(shù)的圖象的一條對稱軸
B.函數(shù)在上單調(diào)遞減
C.函數(shù)的圖象向右平移個單位可得到的圖象
D.函數(shù)在上的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).
(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請確定點(diǎn)的位置;若不存在,請說明理由
(2)己知,若異面直線與成角,二而角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(1) 求拋物線的方程;
(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時,求直線的方程;
(3) 當(dāng)點(diǎn)在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在的函數(shù)的導(dǎo)函數(shù)為.
證明:(1)在區(qū)間存在唯一極小值點(diǎn);
(2)有且僅有2個零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com