【題目】在如圖所示的多面體中,平面,平面,,且的中點(diǎn).

(1)求證:;

(2)求平面與平面所成的二面角的正弦值;

(3)在棱上是否存在一點(diǎn),使得直線與平面所成的角是. 若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

【答案】(1)見解析

(2)

(3)在棱上存在一點(diǎn),使直線與平面所成的角是,點(diǎn)為棱的中點(diǎn).

【解析】

(Ⅰ)由, 的中點(diǎn),得到,進(jìn)而得,利用線面垂直的判定定理,證得平面,進(jìn)而得到

(Ⅱ)以為原點(diǎn),分別以軸,如圖建立坐標(biāo)系,求得平面和平面的一個(gè)法向量,利用向量的夾角公式,即可求解.

(Ⅲ)設(shè),求得,利用向量的夾角公式,求得,即可求解.

1)證明:∵ 的中點(diǎn),∴,

平面,∴,

,∴平面

2)以為原點(diǎn),分別以, 軸,如圖建立坐標(biāo)系

則:, , , ,

, , ,

設(shè)平面的一個(gè)法向量,則: ,

, ,所以

設(shè)平面的一個(gè)法向量,則

, , ,所以,

故平面與平面所成的二面角的正弦值為

3)在棱上存在一點(diǎn),使得直線與平面所成的角是

設(shè),

,

, ,∴,

若直線與平面所成的的角為

,解得,

所以在棱上存在一點(diǎn),使直線與平面所成的角是,點(diǎn)為棱的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線axby=1與圓x2y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(ab)與點(diǎn)(0,1)之間距離的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)繪制的散點(diǎn)圖能夠看出可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;(系數(shù)精確到0.001

2)建立關(guān)于的回歸方程(系數(shù)精確到0.01);如果該公司計(jì)劃在9月份實(shí)現(xiàn)產(chǎn)品銷量超6萬件,預(yù)測(cè)至少需投入促銷費(fèi)用多少萬元(結(jié)果精確到0.01.

參考數(shù)據(jù) , , ,其中, 分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量, .

參考公式:(1)樣本的相關(guān)系數(shù)

2)對(duì)于一組數(shù)據(jù), , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是( )

A. ,則的充分條件是

B. ,則的充要條件是

C. 命題的否定是

D. 是等比數(shù)列,則為單調(diào)遞減數(shù)列的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)excos xx.

(1)求曲線yf(x)在點(diǎn)(0,f(0))處的切線方程;

(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)畫出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在辦公大廳建一面長(zhǎng)為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價(jià)為6400元,一塊長(zhǎng)為米的玻璃造價(jià)為元.假設(shè)所有立柱的粗細(xì)都忽略不計(jì),且不考慮其他因素,記總造價(jià)為元(總造價(jià)=立柱造價(jià)+玻璃造價(jià)).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),怎樣設(shè)計(jì)能使總造價(jià)最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案