【題目】已知f(x)R上的奇函數(shù),且當x>0f(x)=-x2+2x+2.

(1)f(x)的解析式;

(2)畫出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間

【答案】(1) 見解析; (2)增區(qū)間為[-1,0)(0,1],減區(qū)間為(-∞,-1][1,+∞)

【解析】

(1)只需先求出x≤0時的表達式.由奇函數(shù)的性質(zhì)可得f(﹣0)=﹣f(0),可求得f(0);當x<0時,﹣x>0,利用已知表達式可求得f(﹣x),根據(jù)奇函數(shù)性質(zhì)可得f(x)=﹣f(﹣x),由此可求得f(x);(2)根據(jù)二次函數(shù)的圖像的性質(zhì)可分段求出單調(diào)區(qū)間;

(1)設(shè)x<0,則-x>0.

f(-x)=-(-x)2-2x+2=-x2-2x+2.

f(x)為奇函數(shù),f(-x)=-f(x).∴f(x)=x2+2x-2.

f(0)=0,∴f(x)=

(2)先畫出yf(x)(x>0)的圖像,利用奇函數(shù)的對稱性可得到相應yf(x)(x<0)的圖像,其圖像如圖所示.

由圖可知,其增區(qū)間為[-1,0)(0,1],

減區(qū)間為(-∞,-1][1,+∞)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐的底面為矩形,已知, ,過底面對角線作與平行的平面交.

(1)試判定點的位置,并加以證明;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中,平面,平面,,且,的中點.

(1)求證:;

(2)求平面與平面所成的二面角的正弦值;

(3)在棱上是否存在一點,使得直線與平面所成的角是. 若存在,指出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

(1)若,求函數(shù)的最小值;

2)若對于任意恒成立,求a的取值范圍;

(3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)0<a<1,則函數(shù)f(x)loga||( )

A.(,-1)(1,+∞)上單調(diào)遞減,在(1,1)上單調(diào)遞增

B.(,-1)(1,+∞)上單調(diào)遞增,在(1,1)上單調(diào)遞減

C.(,-1)(1,+∞)上單調(diào)遞增,在(1,1)上單調(diào)遞增

D.(,-1)(1,+∞)上單調(diào)遞減,在(1,1)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間.

為了解, 兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取, 兩個型號的手機各臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下,

手機編號

型待機時間(

型待機時間(

其中, , 是正整數(shù),且

)該賣場有型手機,試估計其中待機時間不少于小時的臺數(shù).

)從型號被測試的臺手機中隨機抽取臺,記待機時間大于小時的臺數(shù)為,求的分布列及其數(shù)學期望.

)設(shè), 兩個型號被測試手機待機時間的平均值相等,當型號被測試手機待機時間的方差最小時,寫出, 的值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調(diào)查了位家長,得到如下統(tǒng)計表:

(1)據(jù)此樣本,能否有的把握認為“接受程度”與家長性別有關(guān)?說明理由;

(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選人交流發(fā)言,設(shè)是發(fā)言人中持“贊成”態(tài)度的人數(shù),求的分布列及數(shù)學期望.

參考數(shù)據(jù)

參考公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,.

(1)證明:;

(2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值,若,則的最小值是(

A. 15 B. -15 C. 10 D. -13

查看答案和解析>>

同步練習冊答案