【題目】某校為調查高中生選修課的選修傾向與性別關系,隨機抽取50名學生,得到如表的數據表:
傾向“平面幾何選講” | 傾向“坐標系與參數方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
(1)根據表中提供的數據,選擇可直觀判斷“選課傾向與性別有關系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關系的把握大;
附:K2= .
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)在抽取的50名學生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標系與參數方程”的學生中抽取8人進行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數減去與傾向“坐標系與參數方程”的人數的差為ξ,求ξ的分布列及數學期望.
【答案】
(1)解:選傾向“坐標系與參數方程”與傾向“不等式選講”,k=0,所以這兩種選擇與性別無關;
選傾向“坐標系與參數方程”與傾向“平面幾何選講”,K2= ≈6.969>6.635,
∴有99%的把握認為選傾向“坐標系與參數方程”與傾向“平面幾何選講”與性別有關;
選傾向“平面幾何選講”與傾向“不等式選講”,K2= ≈8.464>7.879,
∴有99.5%的把握認為選傾向“平面幾何選講”與傾向“不等式選講”與性別有關,
綜上所述,選傾向“平面幾何選講”與傾向“不等式選講”與性別有關的把握最大;
(2)解:傾向“平面幾何選講”與傾向“坐標系與參數方程”的學生人數的比例為20:12=5:3,從中抽取8人進行問卷,人數分別為5,3,
由題意,ξ=﹣3,﹣1,1,3,則
P(ξ=﹣3)= = ,P(ξ=﹣1)= = ,P(ξ=1)= = ,P(ξ=1)= = ,
ξ的分布列
ξ | ﹣3 | ﹣1 | 1 | 3 |
P |
數學期望Eξ=(﹣3)× +(﹣1)× +1× +3× =
【解析】(1)利用K2= ,求出K2 , 與臨界值比較,即可得出結論;(2)傾向“平面幾何選講”與傾向“坐標系與參數方程”的學生人數的比例為20:12=5:3,從中抽取8人進行問卷,人數分別為5,3,由題意,ξ=﹣3,﹣1,1,3,求出相應的概率,即可求ξ的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是(為參數).
(Ⅰ)將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)若直線與曲線相交于,兩點,且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設A={x|bx2-5x+a>0},B={x|}.
(1)求a,b的值;
(2)求A∩B和A∪(UB).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新能源汽車的春天來了!2018年3月5日上午,李克強總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.某人計劃于2018年5月購買一輛某品牌新能源汽車,他從當地該品牌銷售網站了解到近五個月實際銷量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
銷量(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經分析,可用線性回歸模型擬合當地該品牌新能源汽車實際銷量(萬輛)與月份編號之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測2018年5月份當地該品牌新能源汽車的銷量;
(2)2018年6月12日,中央財政和地方財政將根據新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠里程)對購車補貼進行新一輪調整.已知某地擬購買新能源汽車的消費群體十分龐大,某調研機構對其中的200名消費者的購車補貼金額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:
補貼金額預期值區(qū)間(萬元) | ||||||
20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現用隨機抽樣方法從該地區(qū)擬購買新能源汽車的所有消費者中隨機抽取3人,記被抽取3人中對補貼金額的心理預期值不低于3萬元的人數為,求的分布列及數學期望.
參考公式及數據:①回歸方程,其中,,②,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解世界杯期間某地區(qū)電視觀眾對《戰(zhàn)斗吧足球》節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾日均收看該節(jié)目時間的頻率分布直方圖:
(注:頻率分布直方圖中縱軸表示,例如,收看時間在分鐘的頻率是)
將日均收看該足球節(jié)目時間不低于40分鐘的觀眾稱為“足球迷”.
(1)根據已知條件完成下面的列聯表,并據此資料判斷是否可以認為“足球迷”與性別有關?如果有關,有多大把握?
非足球迷 | 足球迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“足球迷”人數為.若每次抽取的結果是相互獨立的,求的分布列、均值和方差.
附:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,F是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.
(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的方程為3x+4y-12=0,求滿足下列條件的直線l′的方程:
(1)過點(-1,3),且與l平行的直線方程為________
(2)過點(-1,3),且與l垂直的直線方程為__________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)定義域為(﹣∞,0)∪(0,+∞),f′(x)為其導函數,且滿足以下條件①x>0時,f′(x)< ;②f(1)= ;③f(2x)=2f(x),則不等式 <2x2的解集為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為(弧度).
⑴ 求關于的函數關系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設花壇的面積與裝飾總費用之比為,求關于的函數關系式,并求出的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com