【題目】為了政府對過熱的房地產(chǎn)市場進行調控決策,統(tǒng)計部門對城市人和農村人進行了買房心理預測調研,用簡單隨機抽樣的方法抽取了110人進行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結

城市人

5

15

農村人

20

10

已知樣本中城市人數(shù)與農村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農村人中的糾結人數(shù);
(Ⅱ)從參與調研的城市人中用分層抽樣方法抽取6人,進一步統(tǒng)計城市人的某項收入指標,假設一個買房人的指標算作3,一個糾結人的指標算作2,一個不買房人的指標算作1,現(xiàn)在從這6人中再隨機選取3人,令X=再抽取3人指標之和,求X的分布列和數(shù)學期望.

【答案】解:(Ⅰ)設城市人中的不買房人數(shù)和農村人中的糾結人數(shù)分別是x、y人, 則 = ①,
(20+x)+(30+y)=110②;
由①②組成方程組,解得x=10,y=50;
∴城市人中的不買房人數(shù)和農村人中的糾結人數(shù)分別是10和50人;
(Ⅱ)由(Ⅰ)得到如下列聯(lián)表:

買房

不買房

糾結

總計

城市人

5

10

15

30

農村人

20

10

50

80

總計

25

20

65

110

從參與調研的城市人中用分層抽樣方法抽取的6人中,不買房和糾結的人數(shù)分別是1,2和3,
所以X=7,6,5,4;
所以P(X=7)= = ,
P(X=6)= = ,
P(X=5)= = ,
P(X=4)= =
所以X的分布列為

X

7

6

5

4

P

數(shù)學期望是7× +6× +5× +4× =
【解析】(Ⅰ)設城市人中的不買房人數(shù)和農村人中的糾結人數(shù)分別是x、y人,根據(jù)比例關系列出方程組求出x、y的值即可;(Ⅱ)由(Ⅰ)填寫列聯(lián)表,根據(jù)題意得出X的可能取值,計算對應的概率值,寫出分布列,計算數(shù)學期望值.
【考點精析】關于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)設f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】神舟五號飛船成功完成了第一次載人航天飛行,實現(xiàn)了中國人民的航天夢想,某段時間飛船在太空中運行的軌道是一個橢圓,地球在橢圓的一個焦點上,如圖所示,假設航天員到地球最近距離為d1 , 到地球最遠距離為d2 , 地球的半徑為R,我們想象存在一個鏡像地球,其中心在神舟飛船運行軌道的另外一個焦點上,上面住著一個神仙發(fā)射某種神秘信號需要飛行中的航天員中轉后地球人才能接收到,則神秘信號傳導的最短距離為(
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】17世紀日本數(shù)學家們對這個數(shù)學關于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術”或“玉積率”,創(chuàng)用了求“玉積率”的獨特方法“會玉術”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3 , 其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設運用此“會玉術”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1 , k2 , k3=(
A. :1
B. :2
C.1:3:
D.1:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若對任意的實數(shù)x,f(x)﹣|x|≤a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元前3世紀,古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(d)的立方成正比”,此即V=kd3 , 與此類似,我們可以得到: ⑴正四面體(所有棱長都相等的四面體)的體積(V)與它的棱長(a)的立方成正比,即V=ma3
⑵正方體的體積(V)與它的棱長(a)的立方成正比,即V=na3
⑶正八面體(所有棱長都相等的八面體)的體積(V)與它的棱長(a)的立方成正比,即V=ta3;
那么m:n:t=(
A.1:6 :4
B. :12:16
C. :1:
D. :6:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,以橢圓的四個頂點為頂點的四邊形的面積為8.
(1)求橢圓C的方程;
(2)如圖,斜率為 的直線l與橢圓C交于A,B兩點,點P(2,1)在直線l的上方,若∠APB=90°,且直線PA,PB分別與y軸交于點M,N,求線段MN的長度.

查看答案和解析>>

同步練習冊答案