10.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,i為虛數(shù)單位),若z=(4+3i)i,則ab的值是-12.

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵a+bi=(4+3i)i=-3+4i.
∴a=-3,b=4.
∴ab=-12.
故答案為:-12.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)當(dāng)m=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)h(x)=f(x)-xg(x)-$\sqrt{2}$,x>0.若函數(shù)y=h(h(x))的最小值是$\frac{3\sqrt{2}}{2}$,求m的值;
(3)若函數(shù)f(x),g(x)的定義域都是[1,e],對(duì)于函數(shù)f(x)的圖象上的任意一點(diǎn)A,在函數(shù)g(x)的圖象上都存在一點(diǎn)B,使得OA⊥OB,其中e是自然對(duì)數(shù)的底數(shù),O為坐標(biāo)原點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.二項(xiàng)式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中,$\sqrt{x}$項(xiàng)的系數(shù)是( 。
A.$\frac{15}{2}$B.-$\frac{15}{2}$C.15D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題“?x∈R,ax2+4x+1>0”是假命題,則實(shí)數(shù)a的取值范圍是(  )
A.(4,+∞)B.(0,4]C.(-∞,4]D.[0.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線C2:y2=2px(p>0)的準(zhǔn)線圍成一個(gè)等邊三角形,則雙曲線C1的離心率是( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分別為棱PD,PC的中點(diǎn).求證:
(1)MN∥平面PAB
(2)AM⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足$\sqrt{x}{f^'}(x)<\frac{1}{2}$,則下列不等式中,一定成立的是( 。
A.f(9)-1<f(4)<f(1)+1B.f(1)+1<f(4)<f(9)-1C.f(5)+2<f(4)<f(1)-1D.f(1)-1<f(4)<f(5)+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}滿足an+1=(-1)n(3an-1+1),n≥2,n∈N*,且a1=a2=1,Sn是數(shù)列{an}的前n項(xiàng)和,則S16=$\frac{7}{16}({3}^{8}-1)$-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長(zhǎng)為2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)證明:DC⊥AB;
(2)若C在平面ABDE內(nèi)的正投影為H,求點(diǎn)H到平面BCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案