精英家教網 > 高中數學 > 題目詳情
已知{an}是各項均為正數的等比數列,且a1與a5的等比中項為2,則a2+a4的最小值等于
 
分析:利用a1與a5的等比中項為2,可得a1a5=4,再利用等比數列的性質、基本不等式,即可求得a2+a4的最小值.
解答:解:∵等比數列{an},a1與a5的等比中項為2,
∴a1a5=4,
∵等比數列{an}各項均為正數,
∴a2+a42
a2a4
=2
a1a5
=4,
當且僅當a1=a5=2時,取等號,
∴a1=a5=2時,a2+a4的最小值為4.
故答案為:4
點評:本題考查等比數列的性質,考查基本不等式的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等差數列,lga1、lga2、lga4成等差數列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數列;
(Ⅱ)如果無窮等比數列{bn}各項的和S=
1
3
,求數列{an}的首項a1和公差d.
(注:無窮數列各項的和即當n→∞時數列前項和的極限)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等差數列,lga1,lga2,lga4成等差數列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數列;
(Ⅱ)如果數列{bn}前3項的和等于
7
24
,求數列{an}的首項a1和公差d.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等比數列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=(an+
1
an
2,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是各項均為正數的等比數列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=an2+log2an,求數列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案