已知復(fù)數(shù)z=a+bi(a,b∈R且ab≠0),且z(1-2i)為實(shí)數(shù),則
a
b
=( 。
A、3
B、2
C、
1
2
D、
1
3
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件即可得出.
解答: 解:∵復(fù)數(shù)z=a+bi(a,b∈R且ab≠0),且z(1-2i)=(a+bi)(1-2i)=(a+b)+(b-2a)i為實(shí)數(shù),
∴b-2a=0,
a
b
=
1
2

故選:C.
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|PF1|+|PF2|=2a(2a≥|F1F2|),則動點(diǎn)P的軌跡是( 。
A、以F1,F(xiàn)2為焦點(diǎn)的橢圓
B、以F1,F(xiàn)2為端點(diǎn)的線段
C、以F1,F(xiàn)2為焦點(diǎn)的橢圓或以F1,F(xiàn)2為端點(diǎn)的線段
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=3n-12,則使該數(shù)列的前n項(xiàng)和Sn>0的n最小值是( 。
A、4B、3或4C、8D、7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-1),
b
=(1,2),
c
=(x,1),向量
c
滿足2
a
⊥(
b
+
c
),則x的值為( 。
A、2B、-2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx-
π
3
)(ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A、向左平移
π
12
個單位
B、向右平移
π
12
個單位
C、向左平移
12
個單位
D、向右平移
12
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-2,1]時,不等式mx3≥x2-4x-3恒成立,則實(shí)數(shù)m的取值范圍是(  )
A、[-6,-
9
8
]
B、[-6,-2]
C、[-5,-3]
D、[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間中,下列命題正確的是( 。
A、平行于同一平面的兩條直線平行
B、平行于同一直線的兩個平面平行
C、垂直于同一直線的兩條直線平行
D、平行于同一平面的兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m,n>0,則
1
m
+
2
n
的最小值為(  )
A、6B、8C、4D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“關(guān)于x的不等式x2-2ax-a>0的解集為R”是“0<a<1”( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案