在直角坐標(biāo)系xoy中,已知三點A(-1,0),B(1,0),C(-1,);以A、B為焦點的橢圓經(jīng)過C點,
(1)求橢圓方程;
(2)設(shè)點D(0,1),是否存在不平行于x軸的直線l,與橢圓交于不同的兩點M、N,使(+)•=0?
若存在.求出直線l斜率的取值范圍;
(3)對于y軸上的點P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點M、N,使(+)•=0,試求實數(shù)n的取值范圍.
【答案】分析:(1)設(shè)橢圓方程為,由焦點A(-1,0),B(1,0)及橢圓過C(-1,可得到橢圓方程.
(2)由,知,設(shè)直線方程y=kx+m,(k≠0),設(shè)M(x1,y1),N(x2,y2),MN的中點Q(x,y).由題知可得(3+4k2)x2+8kmx+4k2-12=0,,由△>0可得4k2+3>m2,由可得4k2<-2矛盾.所以符合條件的直線不存在.
(3)由,可推出,要使k存在解得n的取值范圍是
解答:解:(1)設(shè)橢圓方程為,由焦點A(-1,0),B(1,0)及橢圓過C(-1,可得,
,
解得,即橢圓方程是
(2)∵,

由題知直線的斜率存在.可設(shè)直線方程為
y=kx+m,(k≠0),
設(shè)M(x1,y1),N(x2,y2),MN的中點Q(x,y).
由題知,
得(3+4k2)x2+8kmx+4k2-12=0,
,
由△>0,得4k2+3>m2,
,得
即m=-3-4k2,又由4k2+3>m2,可得4k2<-2矛盾.
所以符合條件的直線不存在.
(3)由(2)知,
推出
要使k存在只需,
解得n的取值范圍是
點評:本題考查橢圓方程的求法和判斷直線方程是否存在,求實數(shù)n的取值范圍.解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案