如圖△ACD是等邊三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2

(Ⅰ)求cos∠CBE的值;

(Ⅱ)求AE。

解:(Ⅰ)因為∠BCD=90º+60º=150º,CB=AC=CD,

         所以∠CBE=15º,

         所以cos∠CBE=cos(45º-30º)=

(Ⅱ)在△ABE中,AB=2,

         由正弦定理,

         故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖(1),C是直徑AB=2的⊙O上一點,AD為⊙O的切線,A為切點,△ACD為等邊三角形,連接DO交AC于E,以AC為折痕將△ACD翻折到圖(2)的△ACP位置,點P為平面ABC外的點.
(1)求證異面直線AC和PO互相垂直;
(2)若F為PC上一點,且PF=2FC,PO=
2
,求三棱錐P-AOF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖(1),C是直徑AB=2的⊙O上一點,AD為⊙O的切線,A為切點,△ACD為等邊三角形,連接DO交AC于E,以AC為折痕將△ACD翻折到圖(2)的△ACP位置.
(1)求證異面直線AC和PO互相垂直;
(2)若三棱錐P-ABC的體積為
6
6
,求二面角A-PC-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江市雷州一中高三(上)摸底數(shù)學(xué)試卷(文科)(實驗班)(解析版) 題型:解答題

如圖(1),C是直徑AB=2的⊙O上一點,AD為⊙O的切線,A為切點,△ACD為等邊三角形,連接DO交AC于E,以AC為折痕將△ACD翻折到圖(2)的△ACP位置,點P為平面ABC外的點.
(1)求證異面直線AC和PO互相垂直;
(2)若F為PC上一點,且PF=2FC,PO=,求三棱錐P-AOF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省珠海市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖(1),C是直徑AB=2的⊙O上一點,AD為⊙O的切線,A為切點,△ACD為等邊三角形,連接DO交AC于E,以AC為折痕將△ACD翻折到圖(2)的△ACP位置.
(1)求證異面直線AC和PO互相垂直;
(2)若三棱錐P-ABC的體積為,求二面角A-PC-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省珠海市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖(1),C是直徑AB=2的⊙O上一點,AD為⊙O的切線,A為切點,△ACD為等邊三角形,連接DO交AC于E,以AC為折痕將△ACD翻折到圖(2)的△ACP位置,點P為平面ABC外的點.
(1)求證異面直線AC和PO互相垂直;
(2)若F為PC上一點,且PF=2FC,PO=,求三棱錐P-AOF的體積.

查看答案和解析>>

同步練習(xí)冊答案