已知直線l過直線2x+y-5=0和直線x+2y-4=0的交點,且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為( )
A.x-y-1=0
B.x+y-3=0或x-2y=0
C.x-y-1=0或x-2y=0
D.x+y-3=0或x-y-1=0
【答案】分析:先聯(lián)立已知的兩條直線方程求出交點的坐標,由直線l與兩坐標軸的截距互為相反數(shù),分兩種情況考慮:①當直線l與坐標軸的截距不為0時,設出直線l的截距式方程x-y=a,把交點坐標代入即可求出a的值,得到直線l的方程;②當直線l與坐標軸的截距為0時,設直線l的方程為y=kx,把交點坐標代入即可求出k的值,得到直線l的方程.綜上,得到所有滿足題意的直線l的方程.
解答:解:聯(lián)立已知的兩直線方程得:,解得:,所以兩直線的交點坐標為(2,1),
因為直線l在兩坐標軸上的截距互為相反數(shù),
①當直線l與坐標軸的截距不為0時,可設直線l的方程為:x-y=a,
直線l過兩直線的交點,所以把(2,1)代入直線l得:a=1,則直線l的方程為x-y=1即x-y-1=0;
②當直線l與兩坐標的截距等于0時,設直線l的方程為y=kx,
直線l過兩直線的交點,所以把(2,1)代入直線l得:k=,所以直線l的方程為y=x即x-2y=0.
綜上①②,直線l的方程為x-y-1=0或x-2y=0.
故選C.
點評:此題考查學生會根據(jù)兩直線的方程求兩直線的交點坐標,考查了分類討論的數(shù)學思想,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l過直線2x+y-5=0和直線x+2y-4=0的交點,且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為( 。
A、x-y-1=0B、x+y-3=0或x-2y=0C、x-y-1=0或x-2y=0D、x+y-3=0或x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知直線l過直線2x+y-5=0和直線x+2y-4=0的交點,且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為


  1. A.
    x-y-1=0
  2. B.
    x+y-3=0或x-2y=0
  3. C.
    x-y-1=0或x-2y=0
  4. D.
    x+y-3=0或x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l過直線2x+y-5=0和直線x+2y-4=0的交點,且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為(  )
A.x-y-1=0B.x+y-3=0或x-2y=0
C.x-y-1=0或x-2y=0D.x+y-3=0或x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省期末題 題型:單選題

已知直線l過直線2x+y-5=0和直線x+2y-4=0的交點,且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為

[     ]

A.x-y-1=0  
B.x+y-3=0或x-2y=0
C.x-y-1=0或x-2y=0  
D.x+y-3=0或x-y-1=0

查看答案和解析>>

同步練習冊答案