16.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求證:直線l恒過定點(diǎn);
(2)判斷直線l與圓C的位置關(guān)系;
(3)當(dāng)m=0時(shí),求直線l被圓C截得的弦長(zhǎng).

分析 (1)把直線l的方程化為m(2x+y-7)+(x+y-4)=0,令$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,求出方程組的解即得;
(2)根據(jù)圓C的圓心到定點(diǎn)A的距離d<r,得出A點(diǎn)在圓C內(nèi),直線l與圓C相交;
(3)求m=0時(shí)圓心C到直線l的距離,利用勾股定理求出直線l被圓C所截得的弦長(zhǎng)即可.

解答 解:(1)證明:直線l的方程可化為:
m(2x+y-7)+(x+y-4)=0,
令$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
∴直線l恒過定點(diǎn)A(3,1);
(2)圓C:(x-1)2+(y-2)2=25的圓心C(1,2),半徑r=5,
點(diǎn)A(3,1)與圓心C(1,2)的距離d=$\sqrt{{(3-1)}^{2}{+(1-2)}^{2}}$=$\sqrt{5}$<5=r,
∴A點(diǎn)在圓C內(nèi),即直線l與圓C相交;
(3)當(dāng)m=0時(shí),直線l的方程為x+y-4=0,
由圓心C(1,2)到直線l的距離為d′=$\frac{|1+2-4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
半徑r=5,
∴直線l被圓C所截得的弦長(zhǎng)為2$\sqrt{{r}^{2}{-d′}^{2}}$=2$\sqrt{{5}^{2}{-(\frac{\sqrt{2}}{2})}^{2}}$=7$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了直線與圓相交的性質(zhì),以及直線恒過定點(diǎn)的問題,也考查了直線被圓所截得弦長(zhǎng)的計(jì)算問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某產(chǎn)品在某零售攤位的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如表所示:
 x 16 17 18 19
 y 50 34 41 31
由表可得回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}$=-4,據(jù)此模型預(yù)測(cè)零售價(jià)為20元時(shí),每天的銷售量為  。ā 。
A.26個(gè)B.27個(gè)C.28個(gè)D.29個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若sin(A-B)+sinC=$\sqrt{2}$sinA.
(Ⅰ)求角B的值;
(Ⅱ)若b=2,求a2+c2的最大值,并求取得最大值時(shí)角A,C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U={y|y=x3,x=-1,0,1,2},集合A={-1,1},B={1,8},則A∩(∁UB)=( 。
A.{-1,1}B.{-1}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以正方體的頂點(diǎn)及各面的中心為頂點(diǎn)的三棱錐的個(gè)數(shù)為956.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,將矩形紙片的右下角折起,使得該角的頂點(diǎn)落在矩形的左邊上,那么折痕長(zhǎng)度l取決于角θ的大小,探求l,θ之間的關(guān)系式,并導(dǎo)出用θ表示l的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn),己知|AB|=2|OA|,且點(diǎn)B的縱坐標(biāo)大于0.
(1)求B的坐標(biāo);
(2)求圓x2-6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x8=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,則$\frac{{a}_{5}}{{a}_{6}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)△ABC的內(nèi)角A,B,C 所對(duì)的邊長(zhǎng)分別為a,b,c,$\overrightarrow{m}$=(acosB,bsinA)與$\overrightarrow{n}$=(3,4)共線.
(1)求cosB;
(2)若△ABC的面積S=10,且a=5,求△ABC的周長(zhǎng)l.

查看答案和解析>>

同步練習(xí)冊(cè)答案