已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng).

(1)求數(shù)列{an}的通項(xiàng)公式an;

(2)令,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整數(shù)n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an•log 
12
an,Sn=b1+b2+…+bn,求使Sn+n•2Pn+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列an滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng),則數(shù)列an的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anlog
12
an,求數(shù)列{bn}
的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,對(duì)任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=-nan,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案