9.三個實數(shù)a,b,c成等比數(shù)列,且a+b+c=3,則b的取值范圍是( 。
A.[-1,0)B.(0,1]C.[-1,0)∪(0,3]D.[-3,0)∪(0,1]

分析 設此等比數(shù)列的公比為q,由a+b+c=3,可得$\frac{q}+b+bq$=3,變形為b=$\frac{3}{\frac{1}{q}+q+1}$.對q分類討論,再利用基本不等式的性質即可得出.

解答 解:設此等比數(shù)列的公比為q,
∵a+b+c=3,
∴$\frac{q}+b+bq$=3,
∴b=$\frac{3}{\frac{1}{q}+q+1}$.
當q>0時,b≤$\frac{3}{2+1}$=1,當且僅當q=1時取等號,此時b∈(0,1];
當q<0時,b≥$\frac{3}{-2+1}$=-3,當且僅當q=-1時取等號,此時b∈[-3,0).
∴b的取值范圍是[-3,0)∪( 0,1].
故選:D.

點評 本題考查了等比數(shù)列的通項公式、基本不等式的性質、分類討論思想方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列判斷錯誤的是( 。
A.若p∧q為假命題,則p,q至少之一為假命題
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.若$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow$是真命題
D.若am2<bm2,則a<b否命題是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312
(2)化簡:$\frac{{tan(π+a)cos(2π+a)sin(a-\frac{3π}{2})}}{cos(-a-3π)sin(-3π-a)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=x2+2ax+2在(-∞,-4]上單調遞減,那么實數(shù)a的取值范圍是( 。
A.a≤-4B.a≥-4C.a≤4D.a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC的頂點A(1,3),M(2,2)是AB的中點,BC邊上的高AD所在直線方程為4x+y-7=0,AC邊上的高BE所在直線方程為2x+3y-9=0.
求:(1)求頂點B的坐標及邊BC所在的直線方程;
(2)求AB邊上的中線CM所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+(a-1)x+1.
(Ⅰ)若對任意x∈[1,2],使f(x)>0恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若存在x∈[1,2],使f(x)>0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)當x∈[-1,1]時,求函數(shù)g(x)=f(x)-2x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設集合I=R,集合M={x|x<1},N={x|-1<x<2},則集合{x|-1<x<1}等于( 。
A.M∪NB.M∩NC.(∁IM)∪ND.(∁IM)∩N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設向量$\overrightarrow{a}$=(2,x-1),$\overrightarrow$=(x+1,4),則“x=3”是“$\overrightarrow{a}$∥$\overrightarrow$”的( 。
A.既不充分也不必要條件B.必要而不充分條件
C.充分必要條件D.充分而不必要條件

查看答案和解析>>

同步練習冊答案