【題目】已知正四棱錐的底面邊長(zhǎng)和高都為2.現(xiàn)從該棱錐的5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.

【答案】(1)(2)見(jiàn)解析

【解析】

1)由題意,分別得出“從5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形”和“”所包含的基本事件個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率;

2)先由題意得到的可能取值,求出對(duì)應(yīng)的概率,進(jìn)而可得到分布列,求出期望.

解:(1)從5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,

共有種取法.其中的三角形如,

這類三角形共有個(gè).

因此.

(2)由題意,的可能取值為,2,.

其中的三角形是側(cè)面,這類三角形共有4個(gè);

其中的三角形有兩個(gè),.

因此.

所以隨機(jī)變量的概率分布列為:

2

所求數(shù)學(xué)期望

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一工廠對(duì)某條生產(chǎn)線加工零件所花費(fèi)時(shí)間進(jìn)行統(tǒng)計(jì),得到如下表的數(shù)據(jù):

零件數(shù)x(個(gè))

10

20

30

40

50

加工時(shí)間y(分鐘)

62

68

75

82

88

1)從加工時(shí)間的五組數(shù)據(jù)中隨機(jī)選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時(shí)間的均值的概率;

2)若加工時(shí)間與零件數(shù)具有相關(guān)關(guān)系,求關(guān)于的回歸直線方程;若需加工個(gè)零件,根據(jù)回歸直線預(yù)測(cè)其需要多長(zhǎng)時(shí)間.

(,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

)若為線段的中點(diǎn),求證平面

)求三棱錐體積的最大值;

)若,點(diǎn)在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

個(gè)人所得稅稅率表(調(diào)整前)

個(gè)人所得稅稅率表(調(diào)整后)

免征額3500

免征額5000

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%)

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率(%)

1

不超過(guò)1500元部分

3

1

不超過(guò)3000元部分

3

2

超過(guò)1500元至4500元的部分

10

2

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

3

超過(guò)12000元至25000元的部分

20

...

...

...

...

...

...

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;

(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表

收入(元)

人數(shù)

30

40

10

8

7

5

先從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x2人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;

(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

2)估計(jì)該公司投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬(wàn)元)

1

2

3

4

5

銷售收益y(單位:萬(wàn)元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入上表的空白欄,并計(jì)算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中:

①若命題,,則,;

②將的圖象沿軸向右平移個(gè)單位,得到的圖象對(duì)應(yīng)函數(shù)為;

③“”是“”的充分必要條件;

④已知為圓內(nèi)異于圓心的一點(diǎn),則直線與該圓相交.

其中正確的個(gè)數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓N與圓M關(guān)于直線對(duì)稱.

1)求圓N的方程.

2)是否存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線,使得被圓M截得的弦長(zhǎng)與被圓N截得的弦長(zhǎng)相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正數(shù)數(shù)列的前項(xiàng)和為,對(duì)于任意,的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),的前項(xiàng)和,是否存在常數(shù),對(duì)任意,使恒成立?若存在,求取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見(jiàn)下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤(rùn);

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買該設(shè)備?說(shuō)明理由.

(參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案